
FOR INTERNAL USE ONLY

HEWLETT-PACKARD

SERIES 80 TO SERIES 200 BASIC

TRANSLATION GUIDE

COPYRIGHT © 1983 HEWLETT-PACKARD COMPANY

£957-%37354£0 53

The information contained in this document is subject to change without notice.

Hewlett-Packard makes no warranty of any kind with regard to this material, including, but not

limited to, the implied warranties of merchantability and fitness for a particular purpose.

Hewlett-Packard shall not be liable for errors contained herein or for incidental or

consequential damages in connection with the furnishing, perforance or use of this material.

Hewlett-Packard assumes no resonsibility for the use of its software on equipment that is not

furnished by Hewlett-Packard.

This document contains proprietary information which is protected by copyright. All rights are

reserved. No part of this document may be photocopied, reproduced or translated to another

program language without the prior written consent of Hewlett-Packard Company.

() HEWLETT
PACKARD

DESKTOP CCMPUTER DIVISION - 3404 E. Harmony Road, Ft.Collins, Colorado 80525, Telephone 303 226-3800

September 21, 1983

To The Desktop SE:

I am pleased to present you with the "Hewlett-Packard Series 80 to Series
200 BASIC Translation Guide'. With it you will be better able to assist
customers who wish to transport their BASIC application software from the
Series 80 to the Series 200.

The guide was made possible through the diligence of an engineer in our
Software Lab, who responded to your inputs for such a tool. There are no

plans to make the guide into a product, and it is for internal distribu-

tion only.

We in FSD Technical Support are anxious to hear your reactions to this

exclusive distribution.

Sincerely yours,

Su——

ed Chen
FSD Technical Support Manager-
Language Systems

TC/mg

Table of Contents

A Note to the Systems Engineer.iitiiieinnenns 3

Introduction

Limitations.eeee 6

Moving YOUR Program. ieeeeet teee 6

The ASCII File Approach...iiieeee eee 6

The Machine-to-Machine Transfer Approach.i iiienn..

The Keyboard Entry Method... iiiiii iii iin nena 10

Simplifying Your Program... iiieeeee 11

Line Length...ieeeeeeeee 11

Multi-statement Lines.iiitit tiiiiteinannn. 11

Maximum Line Number.iittet titans 11

Variable Names. iiiiiee tee ee ee 11

Scalar/Array Naming Conflicts...iiititi. 12

Keyword Information
(YY of =X oFJ13

Arithmetic Operators...oiiit i teetite 13

Relational Operators...citeeeee 14

String Operator Ss.oteeeee 15

Arithmetic EXpressions.iiieee 15

Data Precision.iieeeeeeee 16

Special Characters. .oieeee 16

Variables. o.ooeeeeee 18

Variable Names.ieeeeeea 18

IMAGE SpPeCifiers. ..oiieeeeea 19

File Specifiers.oeeee 19

HP-IB Operations. . oiieeteea 20

Alphabetical Keyword Listing...iii 20

Data Transportation
Via 8N INLeraC. . ot itt ee eeeeeeeee 92

Via an ASCII Fale... .oteeee 9%

Using only the Series 200... iiiii 97

Appendix A
Flags

Appendix B
MIKSAM

Appendix C
Matrices

Appendix D
Supported Disc Drives

A Note to the Systems Engineer

In order to give the best help to the Series 80 owner who needs to move his program to the Series
200, this document attempts to give very detailed instructions wherever they are needed. By its

very nature, this document emphasizes the things which are hard to convert. It does not mention

the many features of the Series 200 which are not available on the Series 80 (e.g., availability of

very large memory, a friendlier human interface, data communications capabilities, shared
resource management, unified 1/0, the ability to call compiled subprograms, and the color

graphics options), nor does it discuss the significant execution speed improvements which should

result from transporting a program. It is important not to let the differences between the two

systems cast an unfavorable light on the Series 200.

It is also important to encourage your customers to become familiar with Series 200 BASIC in its

own right. They should write all of their new software using the full functionality of the Series
200. They should not use this document as a crutch to avoid learning Series 200 BASIC. It should
only be used to convert existing software.

Introduction

This document is meant to be a guide for anyone needing to move a Series 80 BASIC program to

a Series 200 machine. It begins by discussing several methods of moving programs to Series 200

hardware. The next chapter contains an alphabetical listing of all Series 80 BASIC capabilities
together with an explanation of how to achieve the same effect in Series 200 BASIC. The final
chapter discusses how to move data. Several appendices cover special topics such as simulating
flags and how to implement global matrix functions.

This document does not address the issues involved with moving either programs or data from

the Series 200 to the Series 80.

Note that throughout this document, the term "Series 80 system" is used to refer to any Series 80

computer—HP83, HP8S, HP86, or HP87. The term "HP 85" generally refers to either the HP83 or
the HP8S, and the term "HP87" generally refers to either the HP86 or the HP87. The term
"Series 200 system" refers to the HP9816, HP9826, HP9836A, HP9836C, or to the HP9920. The
minimum Series 200 software configuration is BASIC 2.0. Depending upon the program to be

translated, various extensions to BASIC 2.0 may be needed. The extensions are AP2.0, AP2.1,

GRAPH2.0, GRAPH2.1, and XREF 2.1 or their ROM equivalents. Whenever they are needed,

they are mentioned explicitly. Note that AP2.1 supercedes AP2.0, and GRAPH2.1 supercedes

GRAPH2.0. Thus whenever this document says, for example, that AP2.0 1s required, either AP2.0

or AP2.1 (or the ROM equivalent) will suffice. The converse 1s not true.

Limitations

In writing this document, every reasonable attempt has been made to help you in converting

your Series 80 BASIC program so that it will run on the Series 200. However, there are a
number of Series 80 BASIC capabilities (such as CRT IS) which are not supported by the Series
200. The 1/0 and graphics subsystems are radically different, so straightforward conversions in

these areas are likely to be less than totally satisfactory. Furthermore, the two systems have

entirely different CPUs, so that Series 80 binary programs cannot be used on the Series 200. If
your Series 80 program makes use of binaries, you have a couple of choices. You can find ouc if a

Series 200 binary or compiled subprogram available commercially or through the Users’ Library

provides the same capability, or you can replace the binary subprogram with a Series 200 BASIC
subprogram or a compiled subprogram that you write yourself.

The information in this document is current as of August 1, 1983. There may be future
language enhancements or bug fixes to either system which will make this document incomplete
or render portions of it obsolete. In particular, future releases of Series 200 BASIC may contain a
different partitioning of the keywords into binaries. The location of a keyword can always be
determined by consulting the Series 200 BASIC Language Reference manual.

Moving Your Program

The first problem which confronts you in translating a Series 80 BASIC program to Series 200
BASIC is how to move your program source and data to a Series 200 machine. The last thing you

want to do is to retype the entire program and data. Fortunately, there are a couple of

relatively painless solutions to this problem. We will look at methods of moving programs in this
chapter. A later chapter in this document will address the problem of data transportation.

There are a number of transformations you may be able to perform on your program using

Series 80 editing capabilities which will make the job of porting it to a Series 200 machine much
easier. Following the hints at the end of this chapter (See Simplifying Your Program) before you

create an ASCII file containing your Series 80 program could save you a great deal of time and

frustration. Most of the hints take advantage of a Series 80 Advanced Programming ROM. If
you do not have this ROM, you can make the indicated changes on your Series 80 machine, or
you can wait until you have moved your program to the Series 200. If you have AP2.0 (or
AP2.1) for your Series 200, it will help immensely.

The ASCII File Approach

The easiest way to move your program to a Series 200 machine is via an ASCII file. This requires
that you have a disc drive supported by your Seri.- 30 machine and a disc drive for the same size
floppy discs which is supported by Series 200 BA:IC (these can be the same disc drive). If your

Series 80 machine is an HP8S, you will also need a Series 80 Mass Storage ROM. A list of

suitable disc drives can be found in Appendix D at the end of this document. The process of
creating an ASCII file involves the use of two Series 80 programs which can be found either

among your demonstration programs or from the Series 80 Users’ Library.

The three-step process for moving your program is described in the following. The GETSAVE

binary for the HP87 is found on your demonstration disc. The equivalent (GETSAYV) binary for
the HP8S is available from the Series 80 Users’ Library (900-0022). The LIF program is also
available from the Users’ Library (9-0049 for the HP8S and 9-0069B for the HP87).

6

Step 1

Use the GETSAVE or GETSAYVbinary to create a Series 80 DATA file containing your program.

To do this, execute the following sequence of commands:

LOAD "yourprog:msus" | Use msus if needed

LOADBIN "GETSAVE .msus" | LOAD BIN "GETSAV:msus" for HP8S

SAVE "yourdata:msus"

If you have an HP87 equipped with an Advanced Programming ROM, omit the LOADBIN.

Step 2

Use the LIF program to create an ASCII file containing your program, as follows:

LOAD “LIF87:msus" | LOAD "LIF :msus® for HPE5

LOADBIN "LIFg:msus" | LOAD BIN "C:msus" for HP8S

Press [RUN]. Give your msus, (unquoted) starting with a semicolon, and press the softkey labeled
LIFSAVE. Continue answering the questions asked.

Step 3

If you will not be using an internal disc drive on your Series 200 machine, reconfigure your

equipment so that an appropriate disc drive is now connected to your Series 200 machine. Power

up your Series 200 machine in BASIC, and load in whatever BASIC extensions are necessary.

(Appendix D will tell you whether AP2.0 is required for your particular disc drive.) Insert the

disc containing the ASCII file representation of your Series 80 BASIC program, and execute

PRINTER IS device specifier |! Specify external printer,

| optional but helpful

GET "yourascii:msus"

This will cause your Series 200 machine to read the ASCII file containing your Series 80

program. It will check each line for syntactic correctness and will convert into comments any

lines which are not correct. Lines containing syntax errors will be printed on the specified device.

You are now ready to use the material in the next chapter of this manual to convert your

program.

The Machine-to-Machine Transfer Approach

If you do not own a disc drive for your Series 80 machine or if your Series 200 machine will not
talk to your disc drive, the method outlined above is of no help to you. If you have a Series 80

HP-IB interface and I/O ROM (see below for an important exception to the I/O ROM
requirement), a tape or disc drive for your Series 80 system, and a disc drive for your Series 200
machine (a built-in drive is fine), you can use the following method. If you use external mass
storage on your Series 80 machine, you will need an extra Series 80 HP-IB interface card and a

Series 80 Mass Storage ROM. You can also adapt this method to non-HP-IB interfaces.

You can move your program source from your Series 80 to your Series 200 machine by
connecting the two machines together via HP-IB interfaces and then sending your Series 80

program one line at a time to your Series 200 machine.

NOTE

Because of irregularities in the Series 80 implementation of
HP-IB, it is not possible to use this method if the same HP-IB
interface connects your Series 80 machine to an external mass

storage device and to your Series 200 computer. You need

HP-IB interfaces on separate select codes. Connect the
interface with the lower select code to the disc and the other
interface to the Series 200 computer.

NOTE

If you have an HP87 and none of your program lines are
longer than 80 characters, you can get by without the 1/0
ROM. You will need to modify both programs. below to

eliminate the "#" from the image specifiers.

This approach requires that you first create a DATA file containing the program to be

translated. Follow step 1 above to do this. Any mass storage medium supported by your Series 80

system will do. Depending on your computer and your choice of mass storage medium, you may

need a Series 80 Mass Storage ROM. You will also need a disc drive supported by your Series
200 system. Depending on your disc drive, you may also need AP2.0 (see Appendix D).

Before the two computers can communicate over HP-IB, you must modify one end of their

common HP-IB interface fo make one of the systems non-controller with bus address 20 on that

interface. Be sure that the other system has some other bus address. It is easiest to modify the

built-in HP-IB interface of the Series 200. However, if you are using external mass storage on
your Series 200 connected on the same HP-IB interface which joins the. Series 200 to the Series

80 computer, you will need to make the Series 80 the non-controller. Consult your Series 200

Installation Manual if you are using the built-in interface, or the documentation supplied with

your card if you are using an add-on card. If you need to modify a Series 80 card, consult the

Series 80 HP-IB Interface Owner’s Manual.

Configure your equipment so that each computer has access to the appropriate mass storage, and

connect the computers together via HP-IB. Power up both systems and enter the following

programs.

NOTE

These programs assume that the Series 200 computer is the
non-controller. If this is not the case, change the Series 80
program to contain PRINTER IS 7 instead of PRINTER IS

720. Also change the Series 200 program to contain ASSIGN
@S80 TO 720 instead of ASSIGN @S80 TO 7.

10 | PROGRAM FOR YOUR SERIES 80 COMPUTER, REQUIRES I/0 ROM
20 DIM A$[160], F$[30])
30 PRINTER IS 720 | CHANGE AS NEEDED
40 DISP "ENTER THE FILE SPECIFIER OF FILE TO BE SENT"

50 INPUT F$
60 ASSIGN# 1 TO F$
70 ON ERROR GOTO 140
80 READ# 1;A$
90 DISP A$
100 IF A$="" THEN GOTO 80
110 A$=A$[1 LEN(AS)-1]
120 PRINT USING "#,A K",CHR$(LEN(AS)) A$
130 GOTO 80
140 IF ERRN=72 THEN GOTO 170
150 DISP "UNEXPECTED ERROR ENCOUNTERED"
160 STOP
170 PRINT USING "#,A K";CHR$ (4), "!1Q#HS$"
180 BEEP
190 DISP "ALL DONE"
200 END

10 | PROGRAM FOR YOUR SERIES 200 COMPUTER, RUNS IN BASIC 2.0

20 DIM A$[160],F$[30]

30 INPUT “NO. OF SECTORS OF DESTINATION FILE", Sectors

40 INPUT “FILE SPECIFIER OF DESTINATION FILE". F$

50 CREATE ASCII F$, Sectors

60 ASSIGN @F TO F$

70 ASSIGN @S80 TO 7

80 Read_line: ENTER @S80 USING "#,B" Length

90 Image$ = "#, "&VALS$(Length)&"A"

100 ENTER @S80 USING Image$; A$

110 IF (Length=4 AND A$="!@#$") THEN

120 DISP "ALL DONE"

130 STOP

140 ELSE

150 PRINT A$

160 OUTPUT @F A$

170 GOTO Read_line

180 END IF

190 END

Make sure that the necessary mass storage media are in their proper drives. You will need to tell

your Series 200 computer how big a file to create to hold your program. You can get this

9

number by doing a CAT on your Series 80 system to determine the size in sectors of the DATA file
which holds your program. Use the same size. Press the [RUN] keys on both of your systems (in

either order) and respond to the requests for input to cause the program to be transferred. When

you are done and disconnect the systems, remember to undo your HP-IB interface modification

to restore its controller status. To proceed with the translation, do a GET of the ASCII file you

have just created for your Series 200 system to bring the program into memory.

A simpler but less reliable way to ship a program over HP-IB is as follows. Configure your

hardware as described above. Load your Series 80 program into memory directly from a PROG

file or type it in. Execute PRINTER IS 720 on your Series 80 machine. Modify the Series 200
program given above so that it does not expect to receive the line length before the line. It

should use free-field ENTER to read a program line. Run the Series 200 program and do a PLIST

on your Series 80 machine. You will also need to arrange to terminate this process somehow.

This method will fail if your Series 80 program contains embedded line-feeds, e.g., if a program
line is greater than the CRT width.

The Keyboard Entry Method

If you cannot use any of the above methods of transferring a program, you will need to type
your program in to your Series 200 computer. You will need an up-to-date listing of your Series
80 program. Probably the best thing to do in this case is to use the next chapter of this manual

to rewrite your program for the Series 200 before typing it in. As an alternative, you may write
a small Series 200 program which creates an ASCII file large enough to hold your program and

which writes your program to this file one line at a time as you type it in. Be sure to start each

line typed in with a line number. Once you have done this, you can bring the program into
memory using a GET and then proceed with the translation.

10

Simplifying Your Program

As mentioned above, performing a few simple transformations on your Series 80 program before
you attempt to move it to a Series 200 machine can greatly expedite the translation process. A
number of suggestions are given here.

Line Length

The maximum line length on the 9826 computer running BASIC 1.0 is 100 characters. (For all
other machines and all other versions of Series 200 BASIC, the maximum line length is 160

characters.) If this is your target machine, you will want to be sure that your program meets this

restriction. Break up long lines before trying to move the program. Otherwise, the GET operation

will terminate with an error.

There is no convenient way of remedying this situation on the Series 200 machine.

Multi-statement Lines

Series 200 BASIC does not support multiple statements per line. You can break up
multi-statement lines either before or after you move your program to the Series 200. (Details

of how to do this are given in the next chapter). However, if you decide to break up lines after
porting, you should be sure that you have line numbers spaced widely enough to allow you to do

this without renumbering your program on the Series 200. This is because moving your program

to the Series 200 machine will cause all lines which are not syntactically legal on the Series 200

to be commented out. Renumbering a program in this state is disastrous because line numbers

embedded in such lines will not be updated.

Maximum Line Number

The highest line number allowed in Series 200 BASIC programs is 32766. The HP87 allows line

numbers up to 99999. If your program contains line numbers greater than 32766, you must
renumber it before you attempt to port it, because the Series 200 GET operation will terminate
at 32767. If necessary, break your program up into several smaller programs first.

Variable Names

If your program was written for an HP8S, all of your variable names will be legal Series 200

variable names, and you may skip this section. However, if your program was written for the

HP87, vou may need to make some modifications. The problem which is most likely to occur is

that your variable names will not observe the Series 200 requirements that the first character be

an upper-case letter and that all succeeding alphabetic characters must be lower-case.

Fortunately, this is handled automatically by the Series 200 syntaxer.

There are, however, several other problems with variable names which are not handled
automatically. If you own a Series 80 Advanced Programming ROM, it will be easier to change
your problem variable names before porting your program. This can be done as follows.

11

First, load in the program to be modified and execute an XREF|tV. This will tell you all the
variable names used in your program. Use this cross-reference to determine which variable
names are potential problems. There are three categories of problems to watch for:

1. Variable names longer than 15 characters (16 including the terminal $ of a string name).
These must be shortened. Use the REPLACEVAR command in your Series 80 Advanced

Programming ROM to substitute a shorter name for each such name. Be sure not to

duplicate any existing names.

2. Variable names which will map to the same Series 200 variable name. The Series 200
syntaxer (invoked during keyboard entry of a program or during a GET) allows variable

names to be entered in any combination of upper and lower case letters. It automatically
transforms them so that the first character is in upper-case and the rest are in

lower-case. For example, the distinct Series 80 variable names XXx and XXX would both

map to Xxx in the Series 200. You will need to find such conflicts in your XREF V listing

and use REPLACEVAR to remove them. Again, be sure not to duplicate any existing names.

3. Variable names =ich conflict with Series 200 keywords (e.g., CASE). This is a hard one
because it requires some familiarity with the Series 200 vocabuiary. You can use

REPLACEVAR to change these names to anything you want. If you wish, you may change

only a single character of each name, and the Series 200 will then be able to distinguish

the name from the keyword. For example, if CASE is changed to CASe, the Series 200
syntaxer will map it to Case, and there will be no problem (mixing upper and lower case
causes the system to interpret the name as a variable name).

If you do not take care of variable name problems before you move your program, lines which
contain illegal variable names will be turned into comments by the Series 200 syntaxer. You will

need to find the problems as you look over your program on a line-by-line basis. You may be
able to use the FIND and CHANGE commands in AP2.0 to help you eliminate the problems once

you have identified them. The Series 200 XREF will not be helpful since the problem variable

names will occur in lines which have been commented out.

Scalar/Array Naming Conflicts

In the Series 80, scalar and array variables in the same environment may have the same name.

On the Series 200, this is not legal and will cause an error at program prerun. If you have a
Series 80 Advanced Programming ROM, you can easily eliminate these conflicts before porting

your program. Do an XREF V. This will generate a cross-reference which distinguishes between

scalar and array occurrences of a variable name. Do not use REPLACEVAR,since it will change all

occurrences for you. Instead, do a manual replacement of either the scalar or the array name,
whichever occurs less frequently. The XREF output will tell you which line numbers need to be

changed.

If you do not have a Series 80 Advanced Programming ROMor if you choose not to do this step,
you can eliminate the conflicts once you have moved your program to the Series 200. If you

have AP2.0 or XREF2.1, you can do an XREF to determine where changes are needed. FIND and

CHANGE can then be used to make the changes. If you do not have AP2.0, you can use the

XREF utility in your Series 200 BASIC Utilities Library.

12

Keyword Information

This section lists each capability of Series 80 BASIC and gives an explanation of how that

capability is supported in Series 200 BASIC. It begins with a discussion of some general topics
and concludes with an alphabetical keyword listing.

If the support for a Series 80 capability requires Series 200 BASIC extensions, the binary which
contains the needed feature is named. Note that future releases of Series 200 BASIC may contain

a different partition of keywords into binaries, so that the information given here would no

longer be valid. Consult the Series 200 BASIC Language Reference manual for your current

release of BASIC whenever any doubts arise.

Operators

Arithmetic Operators

Note that because the Series 80 and the Series 200 use different internal representations for
floating point numbers and different algorithms for floating point operations, these operations

are likely to give slightly different results.

+ (Addition)

No change.

- (Subtraction)

For binary -, no change is required. For unary -, parenthesize the - and its argument.

* (Multiplication)

No change.

/ (Division)

No change.

“~ (Exponentiation)

No change under normal circumstances. Note that 0°0 returns | and issues a warning on the

Series 80. Similarly, O raised to a negative power returns the largest machine real and issues a

warning. On the Series 200, 070 or O raised to a negative power gives Error 26.

MOD

If B is not a positive constant, replace A MOD B by A-BXINT(A/B). If B is guaranteed to be

positive, no change is required.

\ or DIV

13

Parenthesize the second argument if it begins with a negative sign.

Relational Operators

If AP2.0 (or AP2.1) is loaded, string comparisons are done using the collating sequence associated
with the current LEXICAL ORDER IS. If the current collating sequence is not

ASCII, execute LEXICAL ORDER IS before doing the string comparison, and reset the LEXICAL
ORDER IS after the comparison. Otherwise, no change is required.

>

See =

See =.

<=

See =.

<> or #

Replace # by <>. See =.

AND

No change.

OR

No change.

EXOR

No change.

NOT

No change.

14

String Operators

&

No change.

[first subscript] (delimits a substring)

No change is required if the substring is used in right context. Note however, that on the Series

200 as well as on the HP8S, the value of first subscript may be one greater than the current
length of the string. On the HP 87, this condition causes an error. Hence, if you are trapping this
error with ON ERROR, you will need to restructure your program.

In left context, the Series 80 permits addressing a substring which starts beyond the current
length of the string. The designated part of the string is given the value specified, and the

portion of the string between its current length and the newly assigned part is filled with blanks.
The Series 200 allows (current length + 1) as the maximum first subscript of a substring. It may
be impossible to detect these errors until run-time. If they occur, you will need to do the padding

with blanks explicitly to extend the string’s current length before attempting to assign characters

to the "far reaches” of the string.

[first subscript, last subscript] (delimits a substring)

See the immediately preceding entry.

Arithmetic Expressions

There are two differences in the mathematical hierarchies between Series 80 and Series 200.

These differences mean that you need to examine all numeric expressions to see whether they

contain either NOT or a negative constant.

A negative constant can be made to assume its Series 80 behavior on the Series 200 by enclosing

it in parentheses. For example, the expression A/-3 should become A/(-3).

If the operator to the right of NOT is in the following list, the NOT and the operand immediately

to its right should be parenthesized to force the early evaluation of the NOT:

X /, MOD, DIV
+, -

= 3 Cds Cs <> 4

For example, NOT A < B should become (NOT A) < Bso that the NOT will be applied before the

<.

15

Data Precision

The Series 80 uses a BCD numeric representation, and the Series 200 uses binary representations.
Hence the ranges for the various data types are different; in all cases, Series 80 allows greater

range. Consult the following table for details.

Data type Series 80 Range Series 200 Range

REAL -9.99999999999E+499 -1.797693134862315E+308

thru thru

-1.0E-499 -2.225073858507202E-308,

0, and . 0, and

+]1.0E-499 +2.225073858507202E-308

thru thru

+9.99999999999E+499 +1.797693134862315E+308

SHORT +-9.9999E+-99 Not supported, use REAL

INTEGER +-99999 -32768 thru 32767

Special Characters

@ (Statement separator)

The Series 200 does not permit multi-statement lines.

You can break up multi-statement lines either before or after you move your program to the

Series 200. If you choose to break them up on your Series 80 machine and you have an
Advanced Programming ROM, you can use the SCAN command to help you find all of the

multi-statement lines.

If you choose to break up multi-statement lines after you have moved your program to the
Series 200, remember to renumber your program if necessary while it is still on the Series 80
machine. You will need an increment of at least n+2 between line numbers, where n is the
maximum number of statements per line. (Use n+2 to allow for the insertion of DISABLE and
ENABLE where needed. See below.) You must provide sufficient line numbers to do the breaking

apart without needing to renumber you program on the Series 200. (You don’t want to renumber

on the Series 200 before your program is completely translated, because Series 80 line numbers

which are in commented out lines will not be updated by the renumbering, causing a real mess).

After you have moved to the Series 200, all multi-statement lines will have been commented

out by the GET operation. You can use the FIND command in AP2_0 to help you find all

occurrences of "@".

You can use Series 200 EDIT mode to help you break lines apart. Consider the following

example line:

50 'I=I+1 @ PRINT "HELLO" @ GOTO 100

This line consists of three statements, so the first thing you want to do is to create three “copies”

of it. To do this, first position the cursor in line 50, and then press [ENTER]. Your original line is

16

unchanged, but you have placed it in the recall buffer. Now, press [RECALL], press [SHIFT]-[LEFT]
to move the cursor to the left end of the line, change the line number to $1, and press [ENTER].
You now have two copies of the line. Repeat the process of pressing [RECALL], editing the line

number, and pressing [ENTER]. You now have three copies of the line.

Now, edit the three copies of statement 50 so that the first one (still line S50) contains only the
leftmost statement, etc. Be sure to remove the exclamation point after the line number from
each of these lines, too.

A couple of complications can occur when you break up lines. First, the line in question may be
a "critical section." That is, you may want to be sure that program interrupts do not get serviced
while the line is being executed. In this case, you will want to insert a DISABLE statement

before the first statement on the line and an ENABLE statement after the final statement. (This
is why you need n+2 line numbers between lines, instead of just n).

Another complication arises with line labels. If a multi-statement line contains a line label, you
will normally want to associate that label with the first statement on the line as you break it up.

However, if you need to insert a DISABLE before the first statement, the line label should be

associated with the DISABLE instead.

One special case which deserves mention is the Series 80 IF... THEN. . ELSE construct. In order

to break this up for the Series 200, the IF expression THEN must occupy a line, each statement
following the THEN must occupy its own line (precede statement numbers or labels by GOTO), the

ELSE must occupy a line, and each statement following the ELSE must occupy its own line (again,

insert GOTOs before statement numbers or labels). If you break this construct apart on your Series

80 machine, you will need to insert an exclamation point (!) to comment out the resulting IF and
ELSE statements because they will not syntax properly on the Series 80. Remove the exclamation

points once you have moved your program to the Series 200.

! (Remark)

No change.

"* (String delimiters)

No change.

17

Variables

Variable Names

If your program was written for the HP8S, all of your variable names will be legal Series 80
variable names. However, if your program as written for the HP87, you may need to make some

modifications. Detailed instructions are given in the previous chapter of this document, under

the heading Simplifying Your Program.

The Series 80 allows scalars and arrays to have the same variable name, but the Series 200 does
not. The previous chapter gives some instructions on easy ways to find and eliminate these

conflicts. See Simplifying Your Program.

Simple String Variables

The Series 80 allows strings of up to 65530 characters, depending on the memory available. The
Series 200 limit is 32767 characters. Your program will need significant restructuring if it uses
very long strings.

Uninitialized Variables

When the Series 80 encounters an uninitialized variable, one of two things can happen. If no ON
ERROR 1s in effect, the system issues a warning and supplies O or the null string as the value of

the variable, as appropriate. The Series 200 does not supply the warning, but makes the same

default assignments. If an ON ERROR is in effect, however, the Series 80 will branch to the
user-supplied error handling routine when it encounters an uninitialized variable. The Series

200 does not trap this condition. It is best, therefore, to be sure that all variables are initialized
explicitly.

18

IMAGE Specifiers

The Series 200 does not support the C or P specifiers, and there is no easy way to replace them.

The e specifier may be replaced by E, and E by ESZZZ.

The / specifier must be separated from the preceding or following specifier by a comma.

The R and X specifiers are supported in AP2__0.

You will probably need to adjust termination conditions to get the results you expect.

File Specifiers

Most Series 80 files are not usable directly by Series 200 BASIC. ASCII files are the exception.

The previous chapter of this document discusses methods of moving stored Series 80 programs to
the Series 200. A last chapter discusses ways of transporting data.

You will probably try to give your Series 200 files the same names as their Series 80
counterparts. You will need to observe the following restrictions. The Series 200 allows a more

limited character set in file names (upper and lower case alphabetic letters, digits, the underscore,
and the blank—which is ignored) and restricts the length of a file name to 10 characters. It will
not truncate longer names.

It is important to use your Series 80 computer to rename files to legal Series 200 file names
before you try to access these files on the Series 200. The Series 200 will be able to CAT files

with illegal files names, but will not be able to perform any other operations on them because all

other operations require checking the correctness of the file specifier.

Mass storage unit specifiers are quite different on the two systems. Consult your Series 200
BASIC Language Reference Manual for the form of a Series 200 BASIC mass storage unit

specifier. One word of caution is necessary. The numeric part of the Series 80 msus needs to be

changed to be interpreted properly by the Series 200. For example, if you have an HP82901 on
select code 7 at primary address 3, the Series 80 msus for the right-hand drive is *:D731". The

Series 200 msus for the same configuration is * :HP82901,703,1".

19

HP-IB Operations

In a number of HP-IB operations, the Series 80 and the Series 200 send the same bus commands,
but in a slightly different order. The MTA and UNL are often send in the reverse order. This should

have no effect on the operation of your program.

Alphabetical Keyword Listing

ABORTIO

The Series 80 ABORTIO statement serves two purposes—it halts ongoing TRANSFERS, and it sends
an interface-dependent sequence of signals along the specified bus.

If there is any possibility that your Series 80 ABORTIO statement is used to terminate a TRANSFER,
you will need to replace it by a Series 200 ABORTIO statement plus whatever is needed to send
the bus sequences appropriate for the interface in use (see next paragraph). For the Series 200
ABORTIO statement (found in AP2.0), replace the Series 80 select code by the I/O path name
associated with that select code (It is easiest if you use @Sc7 for select code 7, etc.). If you have
used a variable to specify the select code in your Series 80 program, see the discussion of ASSIGN
for a method of constructing the ABORTIO statement you need using OUTPUT 2. If your Series 80

ABORTIO is not used to terminate a TRANSFER, you may omit the Series 200 ABORTIO statement.

In any case, you will need to send the appropriate bus signals. If you are using the HP-IB
interface, you may be able to use the Series 200 ABORT statement, updating the select code to
specify your Series 200 HP-IB interface. The sequence of signals is slightly different from that

sent by the Series 80 ABORTIO. If you are not happy with the Series 200 ABORT, you can create
your own bus sequence with SEND. For non-HP-IB interfaces, consult your Series 200 BASIC

Interfacing Techniques manual to see if you can use CONTROL and WRITEIO to create the desired

effect.

ABS

No change.

ABSUM

Write a function which sums the absolute values of your array elements and replace ABSUM by an

invocation of this function. The Series 200 cannot handle empty arrays.

ACS

No change if your Series 80 trig mode is RAD or DEG If your Series 80 trig mode is GRAD, apply

FNRtg to the result of your Series 200 ACS (see GRAD).

ALPHA (parameterless)

Replace by the two statement sequence

GRAPHICS OFF
ALPHA ON

If your program had been in ALPHALL or GRAPHALL mode, add GINIT after ALPHA ON to reset the
graphics default conditions.

ALPHA (with parameters)

To set the cursor positon on a Series 200 system, use CONTROL to CRT registers 0 and 1. Register
0 controls the column position, and register 1, the row. The value to send to register | to position
the cursor in a particular row may not be obvious because in the Series 80, row 1 1s always the
first row of CRT memory, while in the Series 200, row 1 is always the first visible (on-screen)

row.

To home the cursor, use CONTROL 1;1,1.

ALPHALL

Replace by the three statement sequence

GRAPHICS OFF
ALPHA ON
GINIT

AMAX

If your program uses AMAX but not AMAXCOL or AMAXROW , you may simply use the MAX function

found in AP2.0. If you need to use AMAXCOL or AMAXROW as well, then be sure that the program

segment which contains the AMAX has a reference to COM /Matrix/ (see the appendix on

Matrices). Write a function which also references COM /Matrix/ and replace AMAX by an

invocation of this function. Your function should scan an array to find its maximum element

(the value returned by the function) and the row (Amaxrow) and column (Amaxcol) location of

this element. You will find the BASE, RANK and SIZE keywords in AP2.0 very helpful.

AMAXCOL

Provide the COM reference and function discussed in AMAX. Note that the Series 200 syntaxer

will have changed AMAXCOL to Amaxcol, which is just what you want. This will reference the

appropriate COM variable.

21

AMAXROW

Provide the COM reference and function discussed in AMAX. Note that the Series 200 syntaxer will
have changed AMAXROW to Amaxrow, which is just what you want. This will reference the
appropriate COM variable.

AMIN

If your program uses AMIN but not AMINCOL or AMINROW, you may simply use the MIN function

found in AP2.0. If you need to use AMINCOL or AMINROW as well, then be sure that the program

segment which contains the AMIN has a reference to COM /Matrix/ (see the appendix on

Matrices). Write a function which also references COM /Matrix/ and replace AMIN by an

invocation of this function. Your function should scan an array to find its minimum element
(the value returned by the function) and the row (Aminrow) and column (Amincol) location of
this element. You will find the BASE, RANK, and SIZE keywords in AP2.0 very helpful

AMINCOL

Provide the COM reference and function discussed in AMIN Note that the Series 200 syntaxer
will have changed AMINCOL to Amincol, which is just what you want. This will reference the

appropriate COM variable.

AMINROW

Provide the COM reference and function discussed in AMIN Note that the Series 200 syntaxer

will have changed AMINROW to Aminrow, which is just what you want. This will reference the

appropriate COM variable.

AND

No change.

AREAD

Use ENTER 1 ;<string var>, keeping in mind the following differences.

AREAD does not move the current print position, but ENTER 1 does. If this is important to you, do
a STATUS to CRT registers 0 and | to determine the cursor position, then do the ENTER and

restore the cursor position with CONTROL to CRT registers 0 and 1.

AREAD reads sufficient characters to fill the specified string. It does not terminate on CR/LF, and

it does not enter CR/LF into the string. ENTER terminates on CR/LF. Hence, if your AREAD

attempts to read more than one line of the CRT. ENTER is not a complete solution. Furthermore,

the Series 200 puts CR/LF immediately following the last character output to the screen, but

the Series 80 puts the CR/LF in "columns" 81 and 82 and fills the rest of the line with blanks.

To read more than one line of the Series 200 CRT, therefore, use ENTER to read a line, pad it

with blanks as necessary, use ENTER to read the next line, concatenate the lines, pad with blanks,

etc.

22

ASN

No change if your Series 80 trig mode is RAD or DEG If your Series 80 trig mode is GRAD, apply
FNRtg to the result of your Series 200 ASN (see GRAD).

ASSERT

There is no direct parallel to the Series 80 ASSERT statement. Check the documentation for the
interface you are using and your Series 200 BASIC Interfacing Techniques manual to see i: jou
can create the desired effect using CONTROL and WRITEIO statements. For example, you can use

CONTROL register § on an ordinary serial interface and CONTROL register 8 on a data
communications interface. Be sure to use your Series 200 select code.

ASSIGN

You cannot open Series 80 DATA files from a Series 200 BASIC program. You must first
convert them to Series 200 ASCII or BDAT files. See the last chapter of this document for

methods of doing this. The remainder of this discussion assumes that you are trying to open an
ASCII or a BDAT file.

If a constant (n) is used to specify the file number, replace

ASSIGN# n TO <file specifier>

by

ASSIGN @Fn TO <new file specifier»

If a variable (or numeric expression) is used to specify the file number, replace

ASSIGN# I to «file specifier>

by

OUTPUT 2; "ASSIGN @F"&VALS$(I)&" TO "&<new file specifier> CHR$(255)&"X";

If you use a literal for the <new file specifier>, it must begin and end with three double quote (*)
marks. If you use a string variable or a string expression instead, yo# have two choices. If the
value of the expression has double quotes as its first and last characters, no action is required. If

not, you must concatenate the needed quotes into the output stream immediately before and
immediately after the string expression. For example, if the value of AS is MYFILE: INTERNAL in
order to get the effect of

.. TO "MYFILE INTERNAL"

you will need to use

.&" T0 nEugAggNn

Make the analogous replacements for ASSIGN# ... TO *.

23

NOTE

There is one possible complication which can arise when using
OUTPUT 2 to construct an ASSIGN statement. The I/O path
name must appear explicitly somewhere else in the program

segment. When OUTPUT 2 is used, the I/O path name is built as

part of the output list. It does not appear as a whole in
program source where it can be tokenized by the syntaxer.

Hence, if all references to the I/O path name in that
environment are so constructed, the 1/0 path name will not
appear in the program segment’s symbol table, and when the
OUTPUT 2 statement is executed, the system will generate

Error 910. To get around this, you can insert anywhere in the
program segment a STATUS statement which looks at register 0
of the I/O path name and sets the value of a dummy variable.
This will cause the I/O path name to appear in the symbol
table, and the error will be avoided.

ATN

No change if your Series 80 trig mode is RAD or DEG If your Series 80 trig mode is GRAD, apply
FNRtg to the result of your Series 200 ATN (see GRAD).

ATN2

Replace ATN2 by FNAtn2 (see below). If your Series 80 trig mode is GRAD, apply FNRtg to the
result of FNAtn2 (see GRAD).

Append the following code to your program:

DEF FNAtn2(Y,X)
IF X>s0 THEN RETURN ATN(Y/X)
Z=PI
IF SIN(90)=1 THEN Z2=180
RETURN SGN(Y)*(Z-ATN(ABS(Y/X)))
FNEND

AUTOSTART

There is no direct analog to the AUTOSTART statement. Replace it with LOAD “"AUTOST". You

may wish to reset some system conditions to their power-on values before doing the LOAD.

Consult the Master Reset Table in your Series 200 BASIC Lanugage Reference manual to

determine what conditions will be set automatically by the LOAD.

Note that the Series 200 syntaxer will automatically change AUTOSTART to Autostart.

24

AXES

No change if your AXES statement has parameters. Note, however, that AXES with no parameters

has a special definition on the Series 80. There is no corresponding definition on the Series 200.

Note also that the Series 80 automatically changes into GRAPH mode if it has been executing in
ALPHA mode. The Series 200 does not automatically turn GRAPHICS ON and ALPHA OFF.
You will need to do this explicitly.

AWRIT

Use OUTPUT 1 ;<string exp>.

See AREAD for a discussion of how to handle the fact that AWRIT does not move the current print

position.

BEEP

The default values and allowable ranges of parameters are different on the Series 200. If you
want to create a tone of a particular frequency or duration, consult the Series 200 BASIC
Language Reference for details. If you are satisfied with the Series 200 defaults, no change is

required.

BINAND

No change.

BINCMP

No change.

BINEOR

No change.

BINIOR

No change.

25

BIT

No change.

BLINK

Delete this statement. The Series 200 does not have this capability. Note that the Series 200

syntaxer will not have commented it out because it will have parsed it as an invocation of the
user-supplied subprogram Blink.

BPLOT

You should be able to use the Bload compiled subprogram in the Series 200 BASIC Graphics
Utilities package to produce the same result. This requires AP2.0, GRAPH2.1, and the compiled
subprogram utility.

In order to apply Bload, you will need to put the data to be plotted in an INTEGER array rather

than in a string. Form the string expression argument for BPLOT just as you would for your Series

80 program. Pass this expression and the INTEGER array to a routine which packs the first two
characters of the string into the first element of the INTEGER array, the next two characters
into the next element, etc. This routine can use the NUM function to convert the two string
characters to integers, the SHIFT function to shift the integer resulting from the odd-indexed

string character 8 bits to the left, and the BINAND function to pack the shifted integer and the

other integer into a single integer.

You may need to insert a GRAPHICS ON statement.

BREAD

You should be able to use the Bstore compiled subprogram in the Series 200 BASIC Graphics
Utilities package to produce the same result. This requires AP2.0, GRAPH2.1, and the compiled

subprogram utility.

You will need to move the data you have read from the CRT from the INTEGER array used by

Bstore into the string used by BREAD. Reverse the process described in BPLOT. Use SHIFT and

ROTATE operations to break the an integer apart into two 8-bit integers, and use CHR$ to convert
each of these to a character.

You may need to insert a GRAPHICS ON statement.

BTD

Use IVAL(<string expr>,2) or DVAL(<string expr>,2). This requires AP2.0.

CALL

If your CALL statement specifies the subprogram name as a string constant, remove the
delimiting quote marks. If your CALL statement uses a string variable or expression, you will need

to use OUTPUT 2 (OUTPUT to live keyboard) to create an acceptable Series 200 CALL statement.

For example, if your Series 80 program contains

CALL Name$ (A. BS)

replace it with

OUTPUT 2 ; "CALL "&Name$&"(A,B$)"&CHR$(255)&"X";

In either case, you must also be sure that the name in the CALL statement exactly matches the

name in the SUB statement. The Series 200 does not truncate subprogram names to a fixed
length.

The Series 80 automatically searches the current default mass storage device when it executes a

CALL statement which specifies a subprogram not currently in memory. The Series 200 gives an
error instead. It 1s your responsibility to be sure that all subprograms are present before they are

invoked. You can use LOADSUB to bring in the needed subprograms. If you have AP2.0, you can

use the LOADSUB FROM <file specifier> command before you begin program execution or you can

use the OUTPUT 2 trick, as above, to embed LOADSUB FROM in a program statement. Alternately,
you can use the LOADSUB <subprogram name> FROM <f{ile specifier> statement before the CALL or

in an ON ERROR routine. If you do not have AP2.0, you can use the LOADSUB ALL FROM <file

specifier> statement. This may bring in more subprograms than you actually need. You can use

DELSUB to selectively delete the extras.

Check your pass parameter list for arrays. You must change all array references of the form A()

or A(,) to references of the form A(X).

Check the SUB statement to see if you have made any changes to the formal parameter list. If

you have, then make the corresponding changes to the pass parameter list.

CAT

Replace the Series 80 mass storage unit specifier or volume label by the appropriate Series 200

mass storage unit specifier. The format of the output is somewhat different on the two systems.

If you execute CAT of a disc which contains Series 80 files, their file types will be encoded as
follows:

Series 80 type Series 200 type

BPGM -8184

DATA -8176

GRAF -8180

PKEY -8164

PROG -8160

NULL files do not appear in the Series 200 CAT output.

ASCII files are the only Series &0 files which can be read directly by Series 200 BASIC. ASCII
files have "XxX" in the type field of HP&7 and "asci" in the type field of IIP85 CAT output.

27

CCHRS$

Replace CCHR$ by an invocation of a user-defined function which does a CONTROL to CRT (select
code 1) registers 0 and 1 to reset the cursor position to the desired starting location and then

reads characters from the CRT using ENTER 1.

CCLEAR

Replace CCLEAR by an invocation of a user-defined subprogram which uses CRT STATUS register
3 to determine the number of lines of CRT memory which are above screen. Your subprogram

should then do CONTROL to CRT registers 0 and 1 to move the cursor to the beginning of CRT

memory. Next it should output blanks to the entire CRT memory. Finally it should do CONTROL

1,0;1,1 to home the cursor.

Note that the Series 200 syntaxer will automatically change CCLEAR to Cclear.

CCPOS

Replace CCPOS with an invocation of a user-defined function which determines the current

cursor position using CRT STATUS registers 0 and 1 and then computes a single-number address

using these values.

Note that the Series 200 syntaxer will automatically change CCPOS to Ccpos.

CCURSOR

Replace CCURSOR with CONTROL to CRT (select code 1) registers 0 and 1.

CDISP

Replace CDISP by OUTPUT 1.

CEIL

Append the following code to your program and replace CEIL by FNCeil.

DEF FNCeil (X)
IF XsINT(X) THEN RETURN X
RETURN INT(X)+}
FNEND

238

Page missing from original document

CLEAR interface

If your CLEAR statement acts on an HP-IB interface, you can probably use the Series 200 CLEAR.

Update the device specifier to reflect your Series 200 configuration. If your Series 80 CLEAR
specifies multiple listeners, you will need to replace the multiple listener specification by the I/O
path name associated with that multiple listener or issue a separate Series 200 CLEAR for each
listener.

If your CLEAR statement acts on a GPIO interface, note that the Series 200 GPIO does not
support primary addressing. You may use WRITEIO to register 1 to reset the GPIO interface.

CLEAR screen

Use OUTPUT 2; CHR$(255)&"K"; to clear the entire screen. This is equivalent to pressing the
CLR SCR key. It does not clear the key label area. You must use CONTROL 1,12;1 to do this.

This CONTROL operation requires AP2.0.

If you want to clear CRT memory below the current cursor position, write a subprogram which
uses OUTPUT 1 to send blanks to the CRT. This subprogram can move the cursor to a given spot

before clearing the screen by sending a CONTROL to registers 0 and | of select code 1.

CLINE

Replace CLINE with a CONTROL to CRT(select code) register 1.

CLIP

If your CLIP statement has parameters, no change is required unless you have specified the same
value for the lower limit as for the corresponding upper limit. The Series 200 requires distinct

lower and upper limits.

If your CLIP is parameterless, it is untranslatable.

CLOSE__KEY_FILE

See the appendix on MIKSAM.

CLPOS

Replace CLPOS with an invocation of a user-defined function which uses CRT STATUSregister 1
to determine the current print line.

Note that the Series 200 syntaxer will automatically change CLPOS to Clpos.

30

CNORM

Be sure that the program segment which contains the CNORM has a reference to COM /Matrix/

(sce the appendix on Matrices) Write a function which also references COM /Matrix/ and

replace CNORM by an invocation of this function. Your function should determine the column

norm (the value returned by the function) and the column number (Cnormcol) associated with
this norm.

CNORMCOL

Provide the COM reference and function discussed in CNORM. Note that the Series 200
syntaxer will have changed CNORMCOL to Cnormcol, which is just what you want. This will

reference the appropriate COM variable.

COM

Change all occurrences of SHORT to REAL in your COM declarations.

Be sure that all of your COM declarations observe the Series 200’s limits on array and string
sizes. If OPTION BASE is 0, the maximum upper bound for any dimension of an array is 32766.
If OPTION BASE is 1, the maximum upper bound is 32767. The maximum string length is
32767. If these restrictions are not met, your program will need to be restructured.

Be sure that all of your COM lists are complete. The Series 80 allows programs which use a

preserved COM area to specify only the needed portion of that COM. The Series 200 requires

that the entire COM list be respecified. Otherwise, it will delete the entire old COM area and
reallocate only the portion of COM which is specified by the new program. This will cause all of
the old COM values to be lost.

Check carefully for the following subtle difference. In the Series 80, the type of a scalar or an

array is the last type which was specified (or REAL if no type has been specified). In the Series
200, the appearance of a string or string array declaration in a COM list will cause the next
numeric declaration to be REAL unless a type specification is explicitly given. As an example,

consider

COM INTEGER A, B$[20], C

In the Series 80, C is an INTEGER, but in the Series 200, it is a REAL. In order to port your
program properly, you will necd to insert the keyword INTEGER before the variable C in the
COM list.

CON

See MAT.

31

CONFIG

You can use INITIALIZE with a mass storage unit specifier of ":MEMORY" to create a memory
volume. This requires AP2.1. Consult your Series 200 BASIC Language Reference manual for
details. No volume label may be specified.

COMPEQ

Replace COMPEQ(stringl ,string2) with string I=string 2. If AP2.0 is loaded, the string comparison
will be done according to the collating sequence associated with the current LEXICAL ORDER IS

character set.

COMPGE

Replace COMPGE (stringl ,string2) with stringl>sstring2. If AP2.0 is loaded, the string
comparison will be done according to the collating sequence associated with the current LEXICAL
ORDER IS character set.

COMPGT

Replace COMPGT (string 1 ,string2) with string I>string2. If AP2.0 is loaded, the string comparison
will be done according to the collating sequence associated with the current LEXICAL ORDER IS
characterset.

COMPLE

Replace COMPLE (stringl string?) with stringl<sstring2. If AP2.0 is loaded, the string
comparison will be done according to the collating sequence associated with the current LEXICAL
ORDER IS character set.

COMPLT

Replace COMPLT (string! ,string2) with stringl<string2. If AP2.0 is loaded, the string comparison
will be done according to the collating sequence associated with the currént LEXICAL ORDER IS
character set.

COMPNE

Replace COMPNE (string, string2) with stringl<>string2. If AP2.0 is loaded, the string

comparison will be done according to the collating sequence associated with the current LEXICAL

ORDER IS character set.

32

CONTROL

The Series 200 CONTROL statement is very similar syntactically to the Series 80 CONTROL, but

there are many differences in semantics. You will need to translate this statement very carefully.

If your CONTROL statement uses variables rather than constants, translation may be impossible.

If your Series 80 CONTROL statement specifies an interface select code, replace it with the
appropriate Series 200 select code. If it specifies a buffer, replace the string variable by the
corresponding I/O path name.

You will need to check the documentation for both systems to determine which Series 200
register corresponds to your Series 80 register and how the Series 80 control byte needs to be
modified for the Series 200. (For example, in the Series 80, a newly created buffer has a fill

pointer value of 0.In the Series 200, the value is 1). If you do not find a CONTROL register
correspondence, also check the Series 200 WRITEIO registers for the interface to see if they
provide the needed functionality.

If your CONTROL statement contains a list of control bytes, you will probably need to replace it
with a list of CONTROL statements each specifying one control byte. This is because the order of
registers is often different.

CONVERT

There 1s no CONVERT statement in Series 200 BASIC. To specify character conversions, use the
CONVERT attribute of the ASSIGN statement.

If your Series 80 CONVERT statement specifies an interface select code, you will need a Series 200
ASSIGN statement which assigns an I/O path name to that select code and specifies the character
conversions (e.g, ASSIGN @Sc7 TO 7; CONVERT IN BY PAIRS A$). Note that the Series 200 will
not apply conversions on ENTER and OUTPUT statements which specify interface select codes, only
on those which specify I/O path names.

If your Series 80 CONVERT statement specifies a buffer, you can add a CONVERT attribute to the
ASSIGN statement which replaced your IOBUFFER statement for that buffer, or you can replace
the CONVERT statement with an ASSIGN statement which adds the CONVERT attribute without
resetting the buffer pointers (this form of the ASSIGN does not have TO after the I/O path name).

You will need to beware of the restrictions which the Series 200 places on the string variable
which holds the convert string. The lifetime of the string variable must be at least as great as the
lifetime of the I/O path name for which it specifies the CONVERT.

If your Series 80 CONVERT statement specifies INDEX, you will need to rework your convert

string. The Series 80 places the convert character for CHR$(i) in byte i+1 of the string, for

O<=i<=255. The Series 200 places the convert character for CHR$ (i) in byte i of the string, for
1<=j<=255, and it places the convert character for CHR$(0) in byte 256.

33

COPY parameterless

On the HP8S, COPY causes the alpha or graphics memory to be dumped to the internal printer,
depending upon which mode is active. On the Series 200, use DUMP ALPHA or DUMP GRAPHICS to

cause the dump to go to the current DUMP DEVICE IS printer or to the specified location.

COPY with parameters

To copy a single file, simply update the mass storage unit specifier part of each file specifier.

If you want to copy an entire disc without destroying the current contents of the target disc, do
not use the Series 200 COPY <msus> TO <msus>. It first destroys the directory on the target disc.

Instead, write a subprogram which uses CAT <msus> TO <string array> to help determine what

files are on the source disc. Your subprogram can then COPY each file individually. This requires
AP2.0.

If you don’t mind destroying the contents of the target disc when copying an entire disc, you
may use the Series 200 volume-to-volume COPY if you first change the two file specifiers
appropriately.

COS

No change is required if your Series 80 trig mode is RAD or DEG If your Series 80 trig mode is
GRAD, apply FNGtr to the argument of COS before applying COS.

COT

Use 1/TAN(<num exp>) if your Series 80 trig mode is either RAD or DEG This will be equivalent

to the Series 80 COT (<num exp>) if your Series 80 program has DEFAULT OFF. It will give an
error whenever the value of <num exp> is a multiple of n/4 radians (90 degrees).

If your Series 80 program has DEFAULT ON and you want to avoid these errors, write a function
using TAN which returns machine infinity rather than giving an error. Note, however, that the
value of machine infinity is different on the two systems.

If your Series 80 trig mode is GRAD, write a function to convert grads to radians and use it to
convert <num exp> to radians before invoking TAN

CPRINT

Delete this statement. It applies only to the internal printer of the HP-8S.

34

CREATE

Use CREATE BDAT and update the file specifier appropriately. Note that the Series 200 cannot
create logical records having an odd number of bytes. Also note that the Series 80 may create
more logical records than were requested because it creates as many records as it can in the

number of sectors required to create the requested records. For example, CREATE “"MYFILE"

10,10 actually causes 25 records of ten bytes each to be allocated. The Series 200, on the other
hand, creates only the requested number of records.

You may wish to adjust logical record sizes. Consult your Series 200 Programming Techniques
manual for an explanation of how data is stored in BDAT files.

CREATE_KEY
See the appendix on MIKSAM.

CROSS

See MAT.

CRT IS

Untranslatable. Delete this statement. There is no way to redirect DISP output on the Series 200.
LIST output may be redirected by specifying a destination in the LIST statementitself.

CRT OFF

Untranslatable. Delete this statement.

CRT ON

Untranslatable. Delete this statement.

CSC

Use 1/SIN(<num exp>) if your Series 80 trig mode is either RAD or DEG This will be equivalent

to the Series 80 CSC(<num exp>) if your Series 80 program has DEFAULT OFF. It will give an
error whenever the value of <num exp> is a multiple of 7 radians (180 degrees).

If your Series 80 program has DEFAULT ON and you want to avoid these errors, write a function
using SIN which returns machine infinity rather than giving an error. Note, however, that the

value of machine infinity is different on the two systems.

If your Series 80 trig mode is GRAD, write a function to convert grads to radians and use it to

convert <num exp> to radians before invoking SIN

3S

CSIZE

The Series 200 does not support the third parameter (slant) of the Series 80 CSIZE statement, so
delete this. There is no way to achieve this effect on the Series 200.

The Series 80 uses different default values for CSIZE parameters depending upon whether the
PLOTTER IS device 1s the CRT or an external plotter. The Series 200 uses one set of defaults

across the board. You may need to insert a CSIZE statement after a PLOTTER IS which names an

external plotter in order to get the proportions you expect in your labels.

Because the character height parameter of CSIZE is expressed in graphics display units and the
CRT sizes vary considerably across models of the Series 80 and Series 200, you may need to

experiment with the value in order to get the desired effect.

CSUM

See MAT.

CTAPE

Delete this statement. The Series 200 does not support tape operations. Note that the Series 200
syntaxer will have changed CTAPE to Ctape.

CURSCOL

Replace CURSCOL by a function which uses STATUS on register O of select code I.

CURSOR

If your CURSOR statement is interpreted by your HP87 mainframe as opposed to by the Plotter

ROM,use the WHERE statement in GRAPH2.1. Note that in the Series 200, the status is returned
in a string variable, not in a numeric variable. If you need the pen status, you can obtain it from
the first character of the status string.

If your CURSOR statement is interpreted by your HP8S or HP87 Plotter ROM,it returns the
physical rather than the logical pen position. Series 200 BASIC does not have the ability to
provide the physical pen position when it differs from the logical position. Your program will
need to be restructured.

CURSROW

Replace CURSROW by a function which uses STATUS on register 1 of select code 1. Note that on

the Series 200, a value of | represents the first visible (on-screen) line, not the first line of CRT
memory.

36

CWRITE

Replace CWRITE by OUTPUT 1. Note that control characters (ASCII codes 0-31) will be handled
differently by the Series 200.

DATA

The Series 80 allows double quotes (") to appear in unquoted strings in a DATA list, but the Series

200 does not. You will need to replace each embedded " by ™ and also enclose the string in
double quote marks. For example,

DATA 10,20,HE SAID "NO."

should become

DATA 10,20, "HE SAID "*NO."""

Also, the Series 80 allows any number of "+" and "-" signs to precede the digits of a number, but
the Series 200 number builder allows only one.

DATE

Write a function using TIMEDATE to compute the date and express it in your desired format.
Replace DATE by an invocation of your function.

Note that the origin of the clock is different on the two systems. Hence, if you have not
explicitly set the clock time, different results will be obtained. Also, if your Series 200 machine
has powerfail protection, the clock will continue to run even when the machine is off.

DATES

Write a function which uses DATE$ (TIMEDATE) to compute the date. This requires AP2.0. This
function can also reformat the result any way you wish. See DATE.

DEF FN single~line

The Series 200 does not support single-line functions. You will need to convert your single-line
functions to multi-line functions. First, create two copies of your function definition at the end
of your program, and then delete the original function definition. See the Simplifying Your

Program section of the previous chapter for an easy way to do this. From the first copy of the

function, remove the equal sign and everything to its right. Also remove the exclamation mark
which had been added by the Series 200 syntaxer and press the [ENTER] key. If you get a syntax
error, see DEF FN multi-line below for more changes that are necessary. From the second copy,

remove everything from the exclamation point through the equal sign, and insert the keyword

RETURN before the expression which constitutes the function definition. Again press the [ENTER]

key. Finally, add an FNEND statement immediately following the RETURN statement.

See below for more details.

37

DEF FN multi-line

There is a major difference in the way the two systems handle functions. In the Series 80, a
function shares the main program’s environment, but in the Series 200, a function has its own
environment. This means that you will need to do some program restructuring to get your
functions to work.

First, you must rearrange the order of the lines in your program so that each function definition
occurs after the main program’s END statement. You can use the MOVELINES command in AP2.0

to do this. Note that since MOVELINES automatically renumbers program lines as needed, you

want to perform this operation only after you have already modified as much of the rest of your
program as possible. This is because line numbers which appear in program lines which have been
commented out by the syntaxer will not be updated by the renumbering operation.

Consider the example Series 80 program, which appears on the Series 200 with a number of lines
commented out:

10 I=1+FNX
20 DEF FNX
30 ! FNX=5
40 ! FN END
50 J=2+FNY
60 DEF FNY
70 | FNY=3
80 ! FN END
90 PRINT "DONE*®
100 END

First, execute MOVELINES 50 TO 1S to give

10 I=1+FNX
15 J=2+FNY
20 DEF FNX
30 ! FNX=5
40 | FN END
60 DEF FNY
70 !' FNY=3
80 | FN END
90 PRINT "DONE*®
100 END

Next, execute MOVELINES 90,100 TO 16 to give

10 I=1+FNX

15 J=2+FNY
16 PRINT "DONE"
17 END
20 DEF FNX
30 | FNX=5
40 | FN END
60 DEF FNY
70 | FNY=3
80 ! FN END

The program lines are now in an order acceptable to your Series 200 machine. See FN and FN

38

END later in this chapter for an explanation of what to do with the lines which are commented
out.

In addition, you must determine which variables used by the main program are also used by the

function. Those which are passed as parameters will pose no problem, but those which are not in

the parameter list will need to be added to it. The only limit on the number of parameters which

can be passed to a Series 200 function is imposed by the statement length limit of 100 or 160
characters. If you exceed this limit, you may be able to shorten variable names to avoid the

problem. An alternate solution is to construct a labeled COM block which contains the variables
which are needed by the function. Put the COM statements for this COM in both the main

program and your function. Remember to delete any existing declarations of these variables
from your main program. You may encounter difficulties with the COM approach if you need to
pass the same variables to more than one function.

The easiest way to determine which variables need to be added to the function’s parameter list or

put into a labeled COM block is to first move the function to the end of your program and then

to use the XREF command in AP2.0 or the XREF utility in the Series 200 BASIC Utilities

Library to generate a cross-reference. This cross-reference will give a separate variable lists for
the main program and the function.

You will also need to remove string length declarations from the parameter list in your DEF FN

statement. In the Series 200, strings are always passed by reference, so string formal parameters
“inherit” the length of the corresponding pass parameters.

If your function does any buffer operations, you will need to modify your parameter list. If the
function does not do any string operations on the buffer, you can replace the string name by an

1/0 path name. If the function does both string operations and buffer operations, you will need
to add the I/O path name to the parameterlist.

There are a number of additional complications which arise in converting Series 80 functions for

use by Series 200 computers. One is that OPTION BASE is automatically reset to O for the

declarations within the function. If your main program used OPTION BASE 1, be sure to insert
this statement in the function also. Another is that GOSUBs and GOTOs in the main program must

reference only lines which remain in the main program, and similarly, GOSUBs and GOTOs in the
function must reference only lines which are in the function. Any violations of this rule will be
reported as errors when the program is prerun. A related potential problem is that end-of-line

branching which is defined in the main program (e.g., ON INTR) and which uses GOSUB or GOTO is

disabled while the function is executing. The occurrence of the event is logged, but the interrupt
routine cannot be serviced until execution returns to the main program. Yet another problem

area 1s that if your function contains any READ statements, you will need to be sure that the

appropriate data is moved along with the function statements. This may involve breaking apart
DATA statements which occur in the main program.

DEFAULT OFF

Delete this statement. The Series 200 always has default off.

39

DEFAULT ON

Delete this statement. The Series 200 does not have the ability to automatically check for
overflows—it always uses DEFAULT OFF. If your program uses this option, it may need to be
reworked.

DEG

No change. Note, however, that changes to the trig mode are global on the Series 80 and local on

the Series 200. There is no problem with invoking subprograms because on the Series 200, the
subprogram inherits the trig mode of the calling program. However, there is a problem with
returning from a subprogram. For example, if a subprogram executes a DEG statement, the Series

80 will remain in degree mode when execution returns to the calling program, but the Series 200

will reset the trig mode to the mode which was in effect when the subprogram was invoked. You

may need to insert some additional trig mode changes in your program to make it work properly.

DELETE_KEY

See the appendix on MIKSAM.

DET

No change. This requires AP2.0. Note that the Series 200 cannot handle empty arrays.

DETL

Change DETL to DET. This requires AP2.0. Note that the Series 200 syntaxer will have changed

DETL to Detl.

Since the Series 80 DETL function is affected by the last use of MAT ... SYS as well as by DET,it
is your responsibility to implement MAT ... SYS so as to make this happen. See MAT for details.

DIGITIZE

DIGITIZE requires GRAPH2.0. Delete the third parameter, pen status. The Series 200 DIGITIZE
statement does not return this information.

Note that the Series 80 DIGITIZE reads a point from the PLOTTER IS device, while the Series
200 DIGITIZE reads from the GRAPHICS INPUT IS device. You may need to precede your

DIGITIZE statement by a GRAPHICS INPUT IS statement which specifies the proper device. (If

you have AP2.0, you can determine the current PLOTTER IS device using SYSTEMS.)

40

DIM

You must make sure that the upper bound for any array dimension does not exceed 32766 if
OPTION BASE 0 is in effect, or 32767 if OPTION BASE 1 has been specified. You must also make
sure that no string length greater than 32767 is specified.

DIRECTORY

There 1s no direct Series 200 analog to the Series 80 DIRECTORY statement. If you are interested
in the names of the programs but don’t need size information, you may use the XREF command
found in AP2.0. Since XREF is not programmable, this must appear in your program as

OUTPUT 2;"XREF"&CHR$(255)&"X";

This will cause the XREF output to be directed to the PRINTER IS device. XREF may be replaced

by XREF #device selector if some other destination is desired. It is not practical to direct XREF

output to the CRT because it will fly by too quickly to be read.

If you want both names and size information, do a STORE to some temporary file, CAT that file
(this requires AP2.0), and finally, PURGE the file. Here you run the risk of not having sufficient
disc space to create the temporary file.

DISC FREE

Use CAT TO a string array, extract the number of unused records from its footer line, and use VAL

to convert it to a number. This requires AP2.0. The information can also be obtained from the
DIRECTORY utility in your Series 200 BASIC Utilities Library, but this cannot be incorporated

in a program.

DISP

The Series 200 DISP statement causes the output to be directed to the display line of the CRT. If
you want your output directed to the main portion of the CRT, insert PRINTER IS 1 and change
DISP to PRINT. Add another PRINTER IS after the DISP if you need to redirect your printed

output to another destination. You may use OUTPUT 1 instead (without needing to worry about

PRINTER IS), but realize that OUTPUT treats comma and semicolor separators identically and

that TAB is not allowed in an OUTPUT statement.

In the Series 200, the tabbed fields are ten columns apart, not 21 columns apart as in the Series
80. If your Series 80 machine has an 80-column screen and you want to preserve the appearance
of your Series 80 DISP, you may insert TAB(21), TAB(42), and TAB(63) in your PRINT list. This
will work as long as none of the quantities displayed overflows one field.

Trailing punctuation does not cause the DISP output to be deferred on the Series 200. Instead, it
causes suppression of the EOL sequence.

Initial punctuation is not allowed on the Series 200. You can insert a pair of double quote marks

("') before the leading punctuation to get around this.

41

DISP USING

See DISP and IMAGE.

DIV

Parenthesize the second argument if it begins with a negative sign.

DOT

No change. This requires AP2.0. Note that the Series 200 cannot handle empty matrices.

DRAW

No change. You may need to insert a GRAPHICS ON statement.

DTBS$

Use IVALS$ (<num exp>,2) or DVAL$ (<num exp>,2). This requires AP2.0.

DTHS

Use IVALS$ (<num exp>,16) or DVAL$ (<num exp>,16). This requires AP2.0.

DTOS

Use IVALS (<num exp>,8) or DVALS$ (<num exp>,8). This requires AP2.0.

DTR

Append the following code to your program and replace DTR by FNDtr.

DEF FNDtr(X)

RETURN PIXX/180.
FNEND

DUMP ALPHA

Delete both parameters.

The Series 80 DUMP ALPHA output goes to the PRINTER IS device. The Series 200 output goes to

the DUMP DEVICE IS device unless a destination has been explicitly specified. You may need to

precede your DUMP ALPHA statement with a DUMP DEVICE IS statement.

42

DUMP GRAPHICS

See DUMP ALPHA.

The Series 200 does not rotate the dump output unless EXPANDED has been specified in the DUMP
DEVICE IS statement.

ENABLE AS-ST

Untranslatable. Delete this statement.

ENABLE INTR

Update the select code to reflect your Series 200 configuration. Also, check the documentation
for your interface card to determine the proper value for the mask byte.

ENABLE KBD

The Series 200 does not have the ability to mask keys while the system is waiting for INPUT (bits
0-3 of the mask byte).

To mask keys while the program is running, you can use an ON KBD statement to trap the keys

and store them in the keyboard buffer. You can use the KBD$ function to retrieve the contents of
the buffer and write code to determine which keys were trapped and what to do about it.

END

Every Series 200 main program must have an END statement as its last statement (other than
comments). The END statement must occur before any SUB or DEF FN statements. No other END

statements are permitted. If necessary, insert an END as the last statement of your main program.

Change all other END statements to STOP.

ENTER

If your Series 80 ENTER statement uses a device specifier, replace the device specifier with the
appropriate Series 200 device specifier or with the I/O path name associated with it. Remember

that if you want a CONVERT IN to be applied, you must use the I/O path name.

If your Series 80 ENTER statement specifies a buffer, replace the string variable with the 1/0
path name associated with that buffer. Note that Series 200 buffers are circular. In order to

prevent the system from wrapping around to the beginning of the buffer once it has read the

rightmost byte, precede the ENTER statement with a STATUS statement which determines the

current fill pointer location and a CONTROL statement which sets the fill pointer to 1. After the
ENTER, use another CONTROL statement to restore the fill pointer to the location read by the

STATUS statement.

43

EPS

The Series 200 syntaxer will convert EPS to Eps, which the system will interpret to be 2a REAL
scalar. You may insert the statement Eps=2.225073858507202E-308 (the smallest REAL

representable on the Series 200) prior to any of your references to EPS. Note that this is not the
value of EPS used by the Series 80. This may cause some of your computations to produce
different results. Note also that if you fail to initialize Eps, the system will set it to 0.

ERASETAPE

Delete this statement. The Series 200 does not support tape mass storage. Note that the Series
200 syntaxer will have converted ERASETAPE to Erasetape. A comparable disc operation is
INITIALIZE.

ERRL

On the Series 200, the ERRL function requires a line number or line label as a parameter. It
returns | if the most recent error was in that line, and 0 otherwise.

You will need to rework all references to ERRL Those which are of the form IF ERRL=xxx THEN

.. can be changed to IF ERRL(xxx) THEN...

As an alternative, if you have AP2.0, you can write a function to extract the line number from

ERRMS.

ERRM

Replace this statement by one which does a DISP, PRINT, or OUTPUT of ERRMS$. This requires
AP2.0. Note that the Series 200 syntaxer will have changed ERRM to Errm

ERRN

The error numbering schemes are totally different on the two systems. All of your tests for

particular error numbers will need to be updated. Consult your BASIC Language Reference for a

list of Series 200 error numbers.

ERROM

Untranslatable. It would be best to delete all references to ERROM Note that the Series 200

syntaxer will convert ERROM to Errom a REAL scalar. At prerun time, Errom will get the value 0.

44

ERRSC

Replace ERRSC by an invocation of a user-defined function which uses LEN(VAL$ (ERRDS)) (this

requires AP2.0). If the length is odd, extract the leftmost digit. If it is even, extract the leftmost
two digits. Then apply VAL to the extracted digit(s).

Remember to change all tests on the value of ERRSC to reflect your Series 200 configuation.

Note that the Series 200 syntaxer will have changed ERRSC to Errsc.

EXOR

No change.

EXP

No change. Note, however, that the range of allowable arguments is smaller on the Series 200
than on the Series 80.

FIND

Replace FIND with an invocation of a user-defined function which search the argument string

for the first character whose ASCII code is greater than 127.

FLAG

See the appendix on Flags.

FLAGS

See the appendix on Flags.

FLIP

Use OUTPUT 2;CHR$(255)&"U":. Note that the Series 200 syntaxer will have changed FLIP to

Flip.

FLOOR

Change FLOOR to INT. Note that the Series 200 syntaxer will have changed FLOOR to Floor.

45

FNORM

Write a function to do this. Note that the Series 200 cannot handle empty arrays.

FNfunction name[$] (function invocation)

Check the DEF FN statement to see if you have made any changes in the formal parameter list. If
you have, make the corresponding changes in the pass parameter list.

FNfunction name[$] (returning a value)

Replace

FNfunction name[$] = <exp>

by

RETURN <exp>

See RAD for a discussion of the effect of subprograms (including functions) on trigonometric
computations.

FN END

Change FN END to FNEND.

FOR

There are a number of differences in the implementations of FOR loops. You will need to
examine your FOR statements and FOR loops carefully to see if any changes are required. Some

differences may not become apparent until the program is run.

One very fundamental difference is that, in the Series 200, there must be exactly one NEXT
statement for each FOR statement. FORs and NEXTs are statically matched at program prerun. If

they do not match, a prerun error is reported. If you have more than one NEXT for any FOR, you

will need to re-write the FOR loop to eliminate the extra NEXTs. (If you have no NEXT for some

loop, you will need to supply one.)

There are several conditions which can cause FOR loops to execute a different number of times
on the two systems. The known conditions are:

1. The loop counter variable is used to determine the final or step value for the loop (e.g. FOR

I=1 TO I+2).

2. The expression which is evaluated to determine the final or step value for the loop
contains a side effect which modifies the loop counter variable (e.g. FOR I=1 TO FNX(I)
where FNX modifies I).

3. The loop counter variable and step values are not INTEGERS, and rounding errors occur

(e.g, FOR I=) TO 2 STEP 1 where Iis REAL).

46

4. The initial value given to the loop counter is beyond the final value specified (e.g., FOR
I=20 TO 10 STEP 1 or FOR I=10 TO 20 STEP -1). In such cases, the Series 80 will

execute the loop one time, and the Series 200 will not execute it at all.

FP
If the argument of FP is guaranteed to be positive, you can replace FP by FRACT, found in AP2.0.
If not, append the following code to your program and replace FP by FNFp.

DEF FNFp(X)
RETURN SGN(X)*(ABS(X) MOD 1)
FNEND

FRAME

No change.

Note that the Series 80 automatically switches into GRAPH mode if it had been executing in
ALPHA mode when FRAME is encountered. The Series 200 does not automatically turn GRAPHICS

ON, so the frame will be drawn, but not displayed unless you explicitly execute GRAPHICS ON You
may also execute ALPHA OFF if you wish.

FRE

Replace FRE by VAL(SYSTEMS$ ("AVAILABLE MEMORY")).

FXD

Untranslatable. Delete this statement.

GCLEAR

Note: The pen numbers referred to in this discussion are those used by the HP87. If you have an

HP8S, all negative pen numbers map to PEN -1, and all positive pen numbers and 0 map to PEN

1.

If your GCLEAR statement has no parameter and you are using PEN 1, no change is required. If it
has a parameter, you may delete it and clear the entire screen, or you may write and invoke a

subprogram using the Series 200 GSTORE, zeroing out the proper portion of the array holding the
CRT image, and then doing a GLOAD.

If your Series 80 program uses PEN -1 or PEN -2, use the GSTORE, GLOAD technique described in

the previous paragraph, but set the array elements to —1. If your GCLEAR statement has no

parameter, you may omit the GSTORE operation and set every element of the array to —1.

Otherwise, set only the required portion.

If your Series 80 program uses PEN 0, GCLEAR fills the graphics screen with the current

background color. Use either the Scries 200 GCLEAR or the subprogram described above, as
needed.

You may need to add a GRAPHICS ON statement either before or after your GCLEAR.

47

GETS

Remove the keyword GET$ and the set of parentheses associated with it. For example,
GET$(A$(3)[5.,10]) becomes A$(3)[5,10].

GLOAD

Both systems have GLOAD statements, but their semantics are quite different. On the Series 80,

GLOAD reads the graphics screen image directly from a GRAF file. On the Series 200, GLOAD reads
the graphics screen image from an array in main memory. If you wish to emulate the Series 80
GLOAD on the Series 200, you can do so by reading your data from a BDAT or ASCII file, since

the Series 200 does not support the Series 80 file type GRAF. The BDAT representation (with
FORMAT OFF) is more compact, so it is probably your method of choice. Guidelines for how to

transport a GRAF file to the Series 200 are given in the last chapter of this document.

The following approach will allow you to emulate the Series 80 GLOAD if you have already
transported your GRAF file to the Series 200 or emulated GSTORE and thereby created a file
which contains a graphics CRT image. First ALLOCATE an INTEGER array large enough to
hold the screen image. This requires 7500 elements on the HP9816 and HP9826 and on the
HP9920 with a monochromatic monitor, 12480 elements on the HP9836A, 49152 elements if
using an HP98627A interface, and 49920 elements on the HP9836C. Use an ASSIGN statement
to open the file which contains your graphics data, then use ENTER to write the file to your
array. Next, do a Series 200 GLOAD to write the contents of this array to the graphics CRT.
Finally, unless you are going to be doing frequent GLOAD and GSTORE operations, DEALLOCATE
the large array to recover your RAM.

GOoSuB

No change. Note, however, that the line specified by the GOSUB must be in the same program
segment as the GOSUB statement. For example, a GOSUB in the main program cannot reference a
line in a function.

GOTO

No change. Note, however, that the line specified by the GOTO must be in the same program
segment as the GOTO statement. For example, a GOSUB in the main program cannot reference a

line in a function.

GRAD

GRAD mode is not supported by the Series 200.

Replace the GRAD statement with a RAD statement. Note that the Series 200 syntaxer will have

converted GRAD to Grad. If you want your program to continue to behave as though your

trigonometric computations are being done in grad mode so that you can avoid major program

restructuring, append the following functions to your program.

DEF FNGtr(X)
RETURN PIXX/200
FNEND

48

DEF FNRtg(X)
RETURN 200%X/PI
FNEND

Insert calls to these functions as appropriate in your code. For example, replace all occurrences of
SIN(<num exp>) by SIN(FNGtr(<num exp>)). Replace all occurrences of ASN(<num exp>) by

FNRtg(ASN(<num exp>)).

See RAD for an explanation of problems which may occur if you change your trig mode in a
subprogram.

GRAPH

Replace by the two-statement sequence

ALPHA OFF
GRAPHICS ON

If your Series 80 program had been in ALPHALL or GRAPHALL mode, add GINIT.

GRAPHALL

Replace by the three-statement sequence

ALPHA OFF
GRAPHICS ON
GINIT

If your Series 80 program is already in GRAPHALL mode, omit GINIT.

GRAPHICS

Replace by the two-statement sequence

ALPHA OFF
GRAPHICS ON

If your Series 80 program had been in ALPHALL or GRAPHALL mode, add GINIT.

GRID

No change. Note, however, that GRID with no parameters has a special definition of the Series
80. There is no corresponding definition on the Series 200.

You may need to add a GRAPHICS ON statement immediately before or after your GRID

statement.

49

GSTORE

Both systems have GSTORE statements, but their semantics are quite different. On the Series 80,
GSTORE writes the graphics screen image directly to a file. On the Series 200, GSTORE writes the
graphics screen image to an array in main memory. If you wish to emulate the Series 80 GSTORE
on the Series 200, you can do so by writing your data to a BDAT or ASCII file, since the Series
200 does not support the Series 80 file type GRAF. The BDAT representation (with FORMAT
OFF) is more compact, so it is probably your method of choice.

The following approach will work. First ALLOCATE an INTEGER array large enough to hold
the screen image. This requires 7500 elements on the HP9816 and HP9826 and on the HP9920
with a black and white monitor, 12,480 elements on the HP9836A, 49,152 elements if using the
HP98627A interface card, and 49,920 elements on the HP9836C. Do a Series 200 GSTORE to
write the CRT image to this array. Create a file large enough to hold the array, and open this
file via an ASSIGN statement. Use OUTPUT to write the array to the file. Finally, unless you are
going to be doing frequent GLOAD and GSTORE operations, DEALLOCATE the large array to

recover your RAM.

HALT

Replace HALT by ABORTIO and replace the interface select code by the I/O path name of the

device or select code involved in the TRANSFER you wish to terminate. This requires AP2.0.

HGLS

There is no direct analog to the Series 80 HGL$ function.

The Series 80 HGL$ function produces a string in which each character is different from the
corresponding character in the function’s argument. This string is the same length as the
argument string.

On the Series 200, you may underline an output string by preceding the string in the output
stream with the special character CHR$ (132). Be sure to follow the string with CHR$ (128) to
turn off underlining. You may also concatenate CHR${(132) and CHR$(128) to the front and
back of the string respectively, and store this new string in memory. However, you will need to
be very careful if you do any length checks or character comparisons on this new string since it

will be considerably different in composition from the result of HGLS.

Not all Series 200 computers have the ability to display underlined characters.

HMS

Use the Series 200 TIME function. This requires AP2.0. Note, however, that TIME operates over a

one-day range and HMS over a four-day range.

50

HMS$

Use the Series 200 TIMES function. This requires AP2.0. Note, however, that TIME$ operates
over a one-day range and HMS$ over a four-day range.

HTD

Use IVAL(<string expression>,16) or DVAL (<string expression>, 16). This requires AP2.0.

IDN

See MAT.

IDRAW

No change.

You may need to add a GRAPHICS ON statement immediately before or after your IDRAW.

IF

If your IF statement contains no ELSE clause and has only a statement number or label following

the THEN no change is required. If a statement follows the THEN, check the entry for that

statement to see whether it requires any changes.

If your IF statement has more than one statement after the THEN but has no ELSE, you will need
to replace it by a multi-line construct, as follows:

IF <numeric expression> THEN

then part, one statement per line

END IF

If your IF statement contains an ELSE, rework it as follows:

IF <numeric expression> THEN

then part, one statement per line

ELSE

else part, one statement per line

END IF

51

IMAGE

The Series 200 does not support the C or P image specifiers in any way. Support for the R and *
specifiers is found in AP2.0.

Change the e specifier to E and change E to ESZ22Z.

Note that the / may not be used as a delimiter on the Series 200. It must be separated from the

adjacent specifiers by commas.

You may need to adjust your termination conditions if you use # or %

IMOVE

No change. See PDIR.

INF

The Series 200 syntaxer will convert INF to Inf, which the system will interpret to be a REAL

scalar. You may insert the statement Inf=1.797693134862315E+308 (the largest REAL

representable on the Series 200) prior to any of your references to INF. Otherwise, the system

will initialize Inf to 0. Note that the value above is not the value the Series 80 uses for INF.

This may affect some of your computations.

INITIALIZE

The Series 200 INITIALIZE statement cannot be used to assign a volume label or a directory size

to a mass storage medium. It can only be used to specify the interleave factor. (The other

functions of the Series 80 INITIALIZE are performed by the INITIALIZE utility found in your

Series 200 BASIC Utilities Library).

To convert your INITIALIZE statement, delete the new volume label and directory size

parameters and any commas immediately following them. Change your mass storage unit

specifier to be appropriate for the Series 200. You must include a mass storage unit specifier for

the Series 200. For INITIALIZE, it will not assume the current default device. In addition, you

may wish to specify a new interleave factor. The default interleave factor used by the Series 200

is device dependent. A table of the defaults can be found under INITIALIZE in your Series 200

BASIC Language Reference manual.

INPUT

No change is required in the INPUT statement itself. However, the method of responding to

INPUT promptsis different in the two systems. Be sure to read INPUT in your Series 200 BASIC

Language Reference manual for details.

52

INT

No change.

INTEGER

The Series 200 allows a maximum upper bound of 32766 if OPTION BASE is O and 32767 if
OPTION BASE is 1. If your arrays are larger than this, you will need to restructure your
program.

INV

See MAT.

IOBUFFER

Replace the IOBUFFER statement with an ASSIGN statement which associates an I/O path name
with the string variable. Remember that the lifetime of the string variable must be at least as

long as the lifetime of the I/O path name.

If your program was written for an HP8S, you will also want to adjust the declaration of the
string. You will need to reduce its size by eight bytes (these bytes were used for buffer
management, not for data). This may cause problems if you ever use the string as a string rather
than as a buffer.

Note that buffers are managed somewhat differently by the two systems. Consult your Series

200 BASIC Interfacing Techniques manual for details.

IP

Replace IP (<num exp>) by (<num exp> DIV 1).

IPLOT

No change. See PDIR.

You may need to insert a GRAPHICS ON statement.

ISLANG

Untranslatable. Delete references to this function.

53

KBD$S

No change. Note, however, that in the Series 200, it is not possible to apply KBD CONVERT. You
will need to write your own conversion routine and apply it to the results of KBDS.

KDB CONVERT

Untranslatable. Delete this statement. See KBD$ above.

KEY DOWN

Untranslatable. Delete all references to this function.

KEY LABEL

Use CONTROL 1,12:2 to turn on the display of the soft key labels. (This is the default condition
on the Series 200). This requires AP2.0.

The Series 80 KEY LABEL statement also sets the print position to the upper left corner of the

CRT. If you wish to do this, use CONTROL 1,0;1,1.

KEYLAG

Replace the KEYLAG statement with CONTROL 2,3;repeat speed wait parameter. Note that the
parameters occur in the opposite order in the KEYLAG and CONTROL statements. You may need to
change the values somewhat to achieve the conditions you want.

KILL_KEY_FILE

See the appendix on MIKSAM.

LABEL

The Series 200 does not allow the TAB function to appear in LABEL lists.

The Series 200 cannot slant labels. See CSIZE.

The Series 200clips labels at the current clip boundary, and the Series 80 does not, so you may
need to precede your LABEL statement with CLIP OFF and follow it with CLIP ON in order to get
the output you expect.

You may need to add a GRAPHICS ON statement.

54

LABEL USING

See LABEL and IMAGE.

LANG

Write a function which reads STATUS register 8 of select code 2. This function must then map
the result to the corresponding Series 80 keyboard number. Replace LANG by an invocation of
this function.

LANG OFF

Untranslatable. Delete this statement.

LANG ON

Untranslatable. Delete this statement.

LANGS

Replace LANGS by SYSTEMS ("KEYBOARD LANGUAGE"). This requires AP2.0.

LAXES

The Series 200 does not support LAXES. You will need to use AXES and label them explicitly.

You may need to add a GRAPHICS ON statement.

LBND

Change LBND to BASE. This requires AP2.0.

LDIR

If your LDIR statement has one parameter, no change is required unless your Series 80 trig mode
is grads. If your trig mode is grads, apply FNGtr to the parameter of LDIR (see GRAD).

If your LDIR has two parameters, convert the rise and run to an angle. The function which

replaces ATN2 can be used.

5$

LEN

No change.

LESCAPE IS

Untranslatable. Delete this statement.

LESCAPES

Untranslatable. Delete all references to this function.

LET

You will need to create n separate LET statements wherever you have a LET statement with n

variables to the left of the equal sign. You will want to be sure that the leftmost variable name
occurs in the first of these LET statements, etc. to eliminate the possibility of introducing side
effects from breaking up statements like

LET A(I),I = §

You will also need to change expressions of the form A=B=C to A= (B=C).

LEXS$

Untranslatable. Delete all references to this function.

LGRID

The Series 200 does not support LGRID. You will need to label grids explicitly.

LGT

No change.

LIMIT

If your PLOTTER IS device is the CRT, LIMIT is untranslatable. You may be able to use CLIP or

VIEWPORT to restrict the plotting area, but the effect will be different.

If your PLOTTER IS device is an external plotter, consult the Graphics chapter of your Series

200 BASIC Programming Techniques manual and the documentation for your plotter. You may

be able to restrict the plotting area by setting the plotter’s Pl and P2 either via your program or
manually.

56

LINETYPE

See LINE TYPE.

LINE TYPE

The syntax of LINE TYPE is the same on the two systems, but there are many subtle differences
in semantics. Check the documentation for both systems and for your external plotter for details.

You will probably needto experiment a little to get just the effect you want on the Series 200.

LINPUT

The Series 80 allows the prompt to be specified by a string expression, while the Series 200
requires a string constant for the prompt. To achieve the effect of a string expression prompt,
replace the string expression with ". Immediately before the LINPUT, insert a DISP statement

which displays the value of the prompt expression. Be sure to end the DISP statement with a

semicolon.

LIST

The Series 200 directs the output of a LIST which specifies no destination to the PRINTER IS

device, rather than to the CRT. Use LIST #1 to direct the output to the CRT.

Note also that the Series 200 does not have the ability to list a single CRT’s worth of program.

LLWCS

Replace LLWC$ by LWC$. When AP2.0 is present, LWC$ always uses the collating sequence of the

current LEXICAL ORDER IS.

LOADBIN

Delete this statement. Series 80 binary programs are not usable by the Series 200.

To load a Series 200 binary program, you must use the LOAD BIN command (which must be

executed from the keyboard). Some Series 200 binaries are non-scratchable (e.g. AP2.0) and must

be loaded when the PHYREC binary is not in the machine.

LOAD BIN

See LOADBIN.

57

LOCAL

Update the device specifier(s) to reflect your Series 200 configuration. Note that the bus
sequences are somewhat different in order on the two systems.

LOCAL LOCKOUT

Update the device specifier to reflect your Series 200 configuration.

LOCATE

The Series 200 syntaxer will automatically convert LOCATE xmin ,xmax , ymin, ymax to VIEWPORT
xmin ,xmax , ymin , ymax. In addition, you need to add

WINDOW xmin,xmax,ymin, ymax

immediately following the VIEWPORT. If you have specified a maximum value less than the

corresponding minimum value in order to set up a reflected plot, you must change the VIEWPORT
statement so that the minimum is less than the maximum. Leave the parameters in the WINDOW

statement in the same order as in the LOCATE.

Note that since the CRT sizes vary greatly on the Series 80 and Series 200 machines, you may

need to experiment with the bounds you set in order to get the effect you want.

The parameterless version of LOCATE is untranslatable.

LOG

No change.

LORG

No change is required if the label position evaluates to an integer in the range 1 through 9. Note
however, that the Series 200 gives an error for numbers outside of this range, while the Series 80
uses LORG 1.

LPRINT

Untranslatable. Delete this statement. To achieve the effect of a user-defined mapping scheme,
define an 1/0 path name which corresponds to your printer. Give it the CONVERT OUT BY PAIRS
attribute, and define the mapping by the convert string. This works only for one-to-one

mappings. If you need to do one-to-many or many-to-one mappings, you will need to write

your own "filter" routine and pass all printer output through this filter before sending it to the
printer.

58

LUPCS

Replace LUPC$ by UPC$. When AP2.0 is present, UPC$ always uses the collating sequence of the
current LEXICAL ORDER IS.

LWCS

No change. This requires AP2.0. Note, however, that the Series 80 LWC$ function does not change
upper case letters which also have character highlights, but the Series 200 does. This is because
the two machines use different representations for highlighted characters. See HGLS$ for details.
Note also that in the Series 200, LWC$ always uses the collating sequence of the current LEXICAL
ORDER IS, while in the Series 80, it uses the ASCII collating sequence. If an international
keyboard is in use, 1t may be necessary to precede the LWC$ by LEXICAL ORDER IS ASCII and
follow it by another LEXICAL ORDER IS.

MAKE_KEY_FILE

See the appendix on MIKSAM.

MASS STORAGE IS

Replace your Series 80 volume label or mass storage unit specifier by the appropriate Series 200

mass storage unit specifier.

Check your Series 200 BASIC manuals for information on determining the default mass storage
unit specifier.

MAT

There is a large number of statements which begin with the single keyword MAT. Each type is

identified and explained below. Consult other entries for statements such as MAT DISP which
have a secondary keyword.

The Series 200 cannot handle empty arrays.

MAT result array = (numeric expression)

No change.

59

MAT result array = operand array

No change.

MAT result subarray = operand subarray

Write a subprogram to do this.

MAT result array = -operand array

Use MAT result array = (-1)%operand array.

MAT result array = oparray 1 op oparray 2 where op

can be +,-,.,/,0r *.

No change.

MAT result array = (scalar) op oparray where op can be

+,-,*, or /.

No change.

MAT result array = (scalar)*oparray 14scalar)*oparray 2

Break into several statements, as follows. Be sure, also, to include declarations for your temporary

arrays.

MAT temparrayl = (scalar)Xoparrayl

MAT temparray2 = (scalar)Xoparray?

MAT result array = temparrayl+temparray?2

MAT result array = CON[(redim subscripts)]

Replace this statement by the two-statement sequence

REDIM result array (redim subscripts)

MAT result array = (1)

60

MAT result vector = CROSS(opvectori1,opvector?2)

Write a subprogram to compute the cross product and replace this statement by an invocation of

your subprogram.

MAT result matrix = IDN[(redim subscripts)]

Replace by the two-line sequence

REDIM result matrix (redim subscripts)
MAT result matrix = IDN

MAT result matrix = INV (operand matrix)

No change.

MAT result array = INV (oparray1)*oparray2

Break into two statements, as follows. Be sure to declare your temporary array.

MAT temp = INV (oparrayl)
MAT result array = tempXoparray2

MAT result array = RSUM (oparray)

No change.

MAT result array = SYS (coefficient matrix, constant array)

Write a subprogram to do this and replace this statement by an invocation of your subprogram.

If your program makes use of DETL, you will want your subprogram to save away the coefficient

matrix so that it can invert it (again) as the last operation in the subprogram.

MAT result array = TRN (oparray)

No change.

MAT result array = TRN (oparray1)*oparray2

Break this statement into two statements, as follows. Be sure to declare your temporary array.

MAT temp array = TRN (oparrayl)

MAT result array = temp arrayXoparray2

61

MAT result array = oparray 1*TRN(oparray 2)

Break this statement into two statements, as follows. Be sure to declare your temporary array.

MAT temp array = TRN (oparray2)
MAT result array = oparraylXtemp array

MAT result matrix = ZER[(redim subscripts)]

Replace this statement by the two-statement sequence

REDIM result array (redim subscripts)

MAT result array = (0)

MAT DISP

Replace MAT DISP by PRINT or OUTPUT (see DISP). Also, delete each occurrence of ROW or COL,
and append (X*) to each array name. The Series 200 always prints out matrices by row. If you

want a matrix printed out by column, either compute the transpose (TRN) of the matrix and print

that or write code to print by columns. TRN requires AP2.0. If your Series 80 program uses a
slash separator, replace the slash with a comma and add USING "K,/"; to your PRINT or OUTPUT

statement.

MAT DISP USING

See MAT DISP and USING.

MAT INPUT

Change MAT INPUT to INPUT. Append (*) to each array name. Note that this will not prompt

you for individual array elements.

MAT PRINT

Replace MAT PRINT by PRINT. Also, delete each occurrence of ROW or COL and append (*) to
each array name. The Series 200 always prints out matrices by row. If you want a matrix

printed out by column, either compute the transpose (TRN) of the matrix and print that or write
code to print by columns. TRN requires AP2.0. If your Series 80 program uses a slash separator,

replace the slash with a comma and add USING "K,/"; to your PRINT statement.

62

MAT PRINT USING

See MAT PRINT and USING.

MAT READ

Change MAT READ to READ and append (*) to the name of each array.

MAX

No change. This requires AP2.0.

MAXAB

If your program uses MAXAB but not MAXABCOL or MAXABROW, replace MAXAB array by

MAX (ABS (MAX (array)) ,ABS(MIN(array))). This requires AP2.0. If you need to use MAXABCOL or

MAXABROW as well, then be sure that the program segment which contains the MAXAB has a

reference to COM /Matrix/ (see appendix on Matrices). Write a function which also references
COM /Matrix/ and replace MAXAB by an invocation of this function. Your function should scan

an array to find the element which 1s largest in absolute value (the value returned by the

function) and the row (Maxabrow) and column (Maxabcol) location of this element. You will find

the BASE, RANKand SIZE keywords in AP2.0 very helpful.

Note that you do not want to use the functions you may have written to replace AMAX and AMIN

to help you compute MAXAB because doing so will alter the values of some of the variables in COM

/Matrix/ (Amaxcol, etc.).

MAXABCOL

Provide the COMreference and function discussed in MAXAB. Note that the Series 200 syntaxer

will have changed MAXABCOL to Maxabcol which is just what you want. This will reference the

appropriate COM variable.

MAXABROW

Provide the COM reference and function discussed in MAXAB. Note that the Series 200 syntaxer

will have changed MAXABROW to Maxabrow which is just what you want. This will reference the

appropriate COM variable.

63

MDY

Write a function to do this. This function should use the Series 200 DATE function found in

AP2.0.

MDY$

Write a function to do this. This function should use the Series 200 DATE$ function found in

AP2.0.

No change. This requires AP2.0.

MOD

If B is not a positive constant, replace A MOD B by A-BXINT(A/B).

MOVE

No change.

MSCALE

Replace

MSCALE x,y

by

SHOW -x,x_max-x,-y,y_max-y

where x_max and y_max give the size of the plotting area in millimetres and are dependent upon

which device is being used. Values of x_max and y_max for the various Series 200 CRTs are given

below.

Series 200 Model X_max y_max

16 160 120

20

82913A 210 158

82912A 152 114

26 120 88

36 210 160

36C 217 163

64

MSI

Replace your Series 80 volume label or mass storage unit specifier by the appropriate Series 200
mass storage unit specifier.

Check your Series 200 BASIC manuals for information on determining the default mass storage
unit specifier.

MSUS$

Replace MSUS$ with SYSTEM$ ("MSI"). This requires AP2.0.

M_STATUS

See the appendix on MIKSAM.

NEXT

No change. See FOR for a detailed description of the changes which need to be made in FOR

loops.

NOBLINK

Delete this statement. Note that the Series 200 syntaxer will have converted it to Noblink, and
it will not be commented out.

NORMAL

In a Series 80 program, NORMAL immediately halts all tracing activity and cancels print-all

operations. In the Series 200, use TRACE OFF to cancel tracing. Use OUTPUT 2; CHR$(255)&"A";

to toggle (not necessarily turn off) the PRT ALL switch from a program.

NOT

The precedence of NOT in the mathematical hierarchy is different in the two systems. Numeric
expressions containing NOT may need to be reparenthesized to give the expected result. See the

section on Arithmetic Expressions for further details.

65

NPAR

No change.

NUM

No change is required if the argument of NUM is never the null string. The Series 80 returns O for
NUM("*), but the Series 200 gives an error. You can write a function to imitate Series 80
behavior if you wish.

OFF CCODE

Untranslatable. Delete this statement.

OFF CURSOR

Delete this statement. The Series 200 does not have this capability.

OFF EOT

Replace the interface select code with the I/O path name associated with that select code. Note

that the Series 80 OFF EOT only disables branching caused by TRANSFER termination, while the

Series 200 OFF EOT cancels the ON EOT definition. That is, the Series 80 will continue to log
transfer termination after OFF EOT has been executed, but the Series 200 will not.

The Series 200 does not have the ability to disable branching selectively. However, if you wish to

disable ON EOT and don’t mind disabling your other ONs as well, you can use DISABLE. In this case,

you want to use ENABLE, rather than ON EOT, to re-enable branching.

OFF ERROR

No change.

OFF INTR

Replace the interface select code with the appropriate Series 200 select code. Note that the
Series 80 OFF INTR only disables branching caused by an interface-generated interrupt, while

the Series 200 OFF INTR cancels the ON INTR definition. That is, the Series 80 will continue to
log interrupts after OFF INTR has been executed, but the Series 200 will not.

The Series 200 does not have the ability to disable branching selectively. However, if you wish tc
disable ON INTR and don’t mind disabling your other ONs as well, you can use DISABLE. In this
case, you want to use ENABLE, rather than ON INTR, to re-enable branching. In any case, do not

use DISABLE INTR, since it will prevent the interface from sending the interrupt message.

66

OFF KBD

No change.

OFF KYBD

Replace OFF KYBD by OFF KBD and delete any string expression which appears in this statement.

See ON KYBD for more details. Note that the Series 80 OFF KYBD only disables branching caused

by keyboard activity, while the Series 200 OFF KBD cancels the ON KBD definition. Thai ‘s the

Series 80 will continue to log keyboard interrupts after OFF KYBD has been executed, but the
Series 200 will not log them after executing OFF KBD.

OFF KEY#

Delete the #.

OFF TIMEOUT

Replace the interface select code with the appropriate Series 200 select code. Note that the
Series 80 OFF TIMEOUT only disables branching caused by an interface timeout, while the Series
200 OFF TIMEOUT cancels the ON TIMEOUT definition. That is, the Series 80 will continue to log
timeouts after OFF TIMEOUT has been executed, but the Series 200 will not.

The Series 200 does not have the ability to disable branching selectively. However, if you wish to
disable ON TIMEOUT and don’t mind disabling your other ONs as well, you can use DISABLE. In this

case, you want to use ENABLE, rather than ON TIMEOUT, to re-enable branching.

OFF TIMER#

See ON TIMER#, and make the corresponding change.

ON num exp GOSUB

See GOSUB.

ON num exp GOTO

See GOTO.

67

ON CCODE

Untranslatable. Delete this statement.

ON CURSOR

Delete this statement. The Series 200 does not have this capability.

ON EOT

Replace the interface select code with the I/O path name associated with it. If you have used a
variable or numeric expression to specify the select code, this statement is not translatable. The
"OUTPUT 2" trick often used to get around such problems will not work here since ON EOT cannot
be executed from the keyboard.

ON ERROR

No change is required for ON ERROR GOTO if the line specified is in the proper environment. See
GOTO.

ON ERROR GOSUB works quite differently on the two systems. On the Series 80, if an ON ERROR
GOSUB branch 1s taken, the system branches to the line (not the statement) following the line

containing the error when the RETURN is executed. On the Series 200, the system attempts to

re-execute the line containing the error once it executes the RETURN. Hence, on the Series 200,

ON ERROR GOSUB should be used only when a particular error is anticipated and can be corrected

in the subroutine. Failure to correct the error will cause the program to fall into an infinite loop.

If your Series 80 ON ERROR GOSUB subroutine is designed to detect and repair a particular error
in a particular program line, you can imitate its behavior on the Series 200 as follows. Change

the ON ERROR GOSUB to an ON ERROR GOTO, and replace the RETURN statement with a GOTO

which returns control to the line following the suspect line.

ON INTR

No change.

ON KBD

No change. Note however, that the Series 80 ON KBD traps the RESET key, but the Series 200 ON

KBD does not.

68

ON KEY#

If your ON KEY# statement defines a typing aid, you will need to delete it from your program.
You can define typing aids on the Series 200 by using the EDIT KEY command.

The following applies to ON KEY# statements which contain a GOSUB or GOTO. Delete the #. If
your ON KEY# statement contains a key label definition, replace the comma preceding the label

by the keyword LABEL You may wish to add a priority specifier, too, because the algorithm for

determining which end-of-line branch to service when several are pending is different on the
two systems.

Note that in the Series 200, only keys O through 9 may display key labels. (Key labels which are
specified for the remaining keys are simply ignored by the system. No error is reported.)

Furthermore, key labels are truncated to 8 characters on the 9826. In the Series 80, keys 1
through 14 may have labels, and labels may be up to 10 characters long.

ON KYBD

You may be able to rework your program using the ON KBD statement together with the KBD$
function to achieve the effect of ON KYBD. ON KBD is not selective—it applies to all keyboard keys
with very few exceptions. However, the KBD$ function allows you to determine exactly which

key was pressed and thereby select the action to be performed. Consult your Series 200 BASIC
Language Reference or Interfacing Techniques Manual for more details.

ON TIMEOUT

The Series 200 ON TIMEOUT statement contains both the interface select code and the timeout

time in seconds. To convert your Series 80 ON TIMEOUT statement, update the interface select

code and follow it with a comma and the timeout time. You can obtain the timeout time in

milliseconds from the SET TIMEOUT statement in your Series 80 program and convert this to

seconds. Note that a timeout time of 0 is not legal on the Series 200. Use OFF TIMEOUT instead.

The Series 80 ON TIMEOUT applies to all I/O to external devices. The Series 200 version applies to
a more restricted set of statements.

ON TIMER#

The Series 80 has three identical timers all dedicated to generating interrupts once the specified
time has elapsed. The Series 200 also has three timers which generate interrupts, but each one

has a different function. ON TIMER# is closest in meaning to the Series 200’s ON CYCLE, found in
AP2.0. You will need to convert your time specification from milliseconds to seconds and apply

ABS to it to guarantee that the argument is positive.

The Series 80 timer is reset only after the interrupt branch has been serviced, but in the Series
200, the timer is reset immediately. To imitate Series 80 behavior, insert an OFF CYCLE
statement at the beginning of the interrupt service routine and a new ON CYCLE definition at its

end.

See ON CYCLE, ON DELAY, and ON TIME in your Series 200 BASIC Language Reference manual. It
may be possible that you have been manipulating ON TIMER# to make it perform one of the

other time interrupt functions.

69

OPEN__KEY_FILE
See the appendix on MIKSAM.

OPTION BASE

No change.

OR

No change.

OTD

Use IVAL(<string expression>,8) or DVAL (<string expression> , 8). This requires AP2.0.

OUTPUT

If your Series 80 OUTPUT statement uses a device specifier, replace the device specifier with the

appropriate Series 200 device specifier or with the I/O path name associated with it. Remember
that if you want a CONVERT OUT to be applied, you must use the I/O path name.

If your Series 80 OUTPUT statement specifies a buffer, replace the string variable with the I/O

path name associated with that buffer. Note that Series 200 buffers are circular. In order to
prevent the system from wrapping around to the beginning of the buffer once it has written to
the rightmost byte, precede the OUTPUT statement with a STATUS statement which determines

the current empty pointer location and a CONTROL statement which sets the empty pointer to 1.

After the OUTPUT, use another CONTROL statement to restore the empty pointer to the location
read by the STATUS statement.

PACK

Delete this statement. If you need to pack a disc, you can use the REPACK utility in your Series
200 BASIC Utilities Library.

PAGE

Delete this statement. It applies only to the internal printer of the HP8S.

70

PAGESIZE

Delete this statement. There is no way to achieve this effect on the Series 200.

PASS CONTROL

Replace the Series 80 device selector with the appropriate Series 200 device selector. Note that
the Series 80 can specify only a select code, but the Series 200 requires a primary address.

PAUSE

No change.

PCHAIN

Replace PCHAIN with LOAD, and replace the file specifier with the correct Series 200 file
specifier. If the file is in EPROM, AP2.1 is required.

PDIR

The Series 80 PDIR statement and the Series 200 PIVOT statement both cause rotations to be

applied to lines. However, they apply to different sets of line drawing statements. There are two
possible ways to convert your Series 80 program's handling of PDIR. Which method to use

depends on the character of your program.

If your program contains more RPLOT, IPLOT, IMOVE, and IDRAW statements than other line

drawing statements, use the following method.

Replace PDIR by PIVOT. If your PDIR statement specifies a rise and run, convert this to the

proper angle. Use the function which replaces ATN2 to do this. Insert PIVOT 0 statements in your

program prior to the other line drawing statements and later reset PIVOT to the specified value

to get the desired effect.

If your program contains comparatively few statements affected by PDIR, use the method below.

Create a named COM area which contains a REAL scalar called Pdir. Insert the required COM

statement in every program context which does line drawing operations. Replace your PDIR

statements with LET statements which give the value of the desired rotation to the COM
variable Pdir. Immediately before each RPLOT/IPLOT/IMOVE/IDRAW statement, insert the
statement PIVOT Pdir. Immediately after each RPLOT/IPLOT/IMOVE/IDRAVW, insert the statement
PIVOT Oo.

Regardless of which way you simulate PDIR, if your PDIR statement has a single parameter and
your trig mode is grads, you need to apply FNGtr to the PDIR parameter (see GRAD).

71

PEN

The syntax of the PEN statement is the same, but the semantics is quite different on the two
systems, especially when the active plotter is the CRT. The Series 200 does not have some of the
capabilities of the Series 80. Consult your Series 200 BASIC Language Reference for details.

Here is a table of correspondences of pen numbers for CRT graphics. Check your system
documentation to see how values other than these are mapped to legal pen values.

HP8S HP87 Series 200

-2 0
-1 -1 -1

0 none

1 1 l

PENUP

No change.

Pl

No change.

PLIST

Replace PLIST by LIST.

PLOADBIN

Untranslatable. Delete this statement. See LOAD BIN.

PLOADGO

Replace PLOADGO with LOAD, and replace the file specifier with the appropriate Series 200 file
specifier. If the file is in EPROM, AP2.1 is required.

PLOT

No change.

72

PLOTTER IS

Change the device selector to the appropriate Series 200 device selector. Add ," INTERNAL" if the
CRT (select code 3) is the specified plotter, and ,"HPGL" otherwise. In addition, insert a GINIT
statement before the PLOTTER IS to reset the graphics default conditions.

POS

No change.

PPOLL

Replace the Series 80 device selector by the appropriate Series 200 device selector.

PRINT

No change. Note, however, that on the Series 200, the tabbed fields are only 10 characters wide

and there will be either 5 or 8 fields on the CRT, depending on the machine used. If you want to

create a particular effect, you may need to use PRINT USING

PRINT ALL

Use OUTPUT 2;CHR$(255)&"A"; to toggle the PRT ALL key.

Since the default printall printer on the Series 2001s the CRT, you will probably want to

include a PRINTALL IS statement to define an external printer to be the printall device.

PRINT USING

See PRINT and IMAGE.

PRINT#

If you have used a constant to specify the buffer (file) number, repldce PRINT# by OUTPUT and

replace the buffer number by the I/O path name associated with the file. (See ASSIGN. It directs
you to replace buffer 1 by @F]1, etc.)

If you have used a variable or a numeric expression to specify the buffer number, replace

PRINTH# exp; print# list

by

OUTPUT 2: "OUTPUT @F"&VALS$(exp)&"; print# list"

&CHR$ (255) &"X";

Similarly, replace

PRINT# exp.record; print# list

13

by

OUTPUT 2; "OUTPUT @F"&VAL$(exp)&".," &VALS$(record) *. print# list"&CHR$(

Note that if the PRINT# list contains any literals, the quote marks (") which delimit the literal

will need to be doubled ('*). Also, if the PRINT# list contains any array references, they need to be

modified. For example, A() or A(,) needs to be replaced by A(X).

PRINTER IS

Replace the device selector with the appropriate Series 200 device selector. If you have specified
a line length, replace the comma by ;WIDTH. Note that a line length of O is illegal on the Series
200. Use 80 instead. AP2.0 is required if WIDTH is to be specified.

PRINTER TYPE

Untranslatable. Delete all references to this function.

PRINTER TYPE IS

Untranslatable. Delete this statement. If you need to interface to a printer which does not
support the standard 8-bit Extended Roman character codes, you will need to write a filter
routine as described in LPRINT and pass all of your output through this filter before sending it

to the printer.

PROM IS

Untranslatable. Delete this statement. Statements such as PCHAIN which refer to the PROM IS

device need to contain a full file specifier.

PURGE

If your PURGE statement does not specify a purge code, simply replace the file specifier by the
appropriate Series 200 file specifier.

The Series 200 does not use purge codes and does not have the ability to purge multiple files
with a single statement. If you want to do this, you will need to write a subprogram which uses

CAT to a string array, finds the name of the first file to be purged in this array, purges it, then

purges the next one, etc. This requires AP2.0. Replace your PURGE statement by a call to this
subprogram.

Before you write a subprogram to do PURGE, note that the method of allocating space for files on

a disc is different on the two systems, so that files are likely to be stored in a different order. If

you apply this algorithm carelessly, you run the risk of purging needed files.

Note also that the Series 200 does not allow open files to be purged, but the Series 80 does. If
PURGE gives you an Error 77, you will need to ASSIGN <file> TO * before re-attempting the

PURGE.

Note that PURGE on the Series 200 does not create NULL files.

74

RAD

No change. Note, however, that changes to the trig mode are global on the Series 80 and local on
the Series 200. There is no problem with invoking subprograms because on the Series 200, the
subprogram inherits the trig mode of the calling program. However, there is a problem with
returning from a subprogram. For example, if a subprogram executes a RAD statement, the Series

80 will remain in radians mode when it returns to the calling program, but the Series 200 will

reset the trig mode to the mode which was in effect when the subprogram was invoked. You
may need to insert some additional trig mode changes in your program to make it work properly.

RANDOMIZE

No change. Note, however, that the algorithms for generating random number seeds are

different. The recommended range for seeds on the Series 200 is 1 to 2*-2.

RATIO

No change. Note, however, that the default value returned by RATIO when the CRT is the

plotter will be different.

READ

No change.

If a READ statement occurs in a function, make sure that the required DATA statements are also in

that function.

READTIM

The Series 200 does not have the ability to read the system timer. Remove this function from

your program.

READ#

See PRINT#. Make the analogous changes, substituting ENTER for OUTPUT.

Recall that Series 200 machines cannot read Series 80 DATA files directly. See the data

translation chapter of this document for help in transforming yourfiles.

75

REAL

No change provided you do not exceed the maximum array size for the Series 200. The Series
200 allows an array subscript to have a maximum upper bound of 32766 if OPTION BASE is 0
and 32767 if OPTION BASE is 1. If your arrays are larger than this, you will need to restructure
your program.

REDIM

No change provided you do not exceed the maximum array size for the Series 200. See REAL,

above. Note, also, that if a Series 80 program redimensions an array and then reruns the
program, the array does not reassumeits original dimensions. On the Series 200, it does.

REM

No change.

REMOTE

If your REMOTE statement is directed to an HP-IB interface, update the device selector to the

appropriate Series 200 device selector. If your REMOTE statement specifies multiple devices, you
will need to replace it with a series of REMOTE statements, one for each device in the list or
replace the multiple listener specification with the I/O path associated with that set of devices.
Note that the bus sequences are somewhat different in order on the two machines.

There is no Series 200 analog to REMOTE to a BCD interface.

RENAME

Be sure that both the old and new file names are legal Series 200 file names. Also, change the old

mass storage unit specifier to the appropriate Series 200 mass storage unit specifier.

Note that you cannot use a Series 200 computer to rename a file whose name is illegal on the

Series 200. You will need to do this on your Series 80 machine.

REQUEST

If your REQUEST statement is directed to an HP-IB interface, simply update the interface select

code. This requires AP2.0. If the REQUEST is directed to an ordinary serial interface, use BREAK
(if you have AP2.0) or CONTROL to register 6 (if you do not have AP2.0). If it is directed to a
datacomm interface, use BREAK or CONTROL to register 1.

76

RESET

Update the interface select code appropriately. RESET requires AP2.0. Note that the Series 200
RESET waits for an ongoing TRANSFER to complete, but the Series 80 RESET does not. If this is a
concern, insert an ABORTIO statement before the RESET.

RESTORE

If the RESTORE statement occurs in a function or subprogram, the Series 200 can move the DATA
pointer only to DATA statements within that function.

RESUME

If the RESUME is directed to an HP-IB interface, replace it with a SEND of DATA (with no data list)
to the appropriate select code.

There is no Series 200 analog to RESUME on a serial interface.

RETURN

No change.

REVS

No change. This requires AP2.0.

REWIND

Delete this statement. Note that the Series 200 syntaxer will change REWIND to Rewind.

RMD

Append the following code to your program and replace RMD by FNRmd.

DEF FNRmd (X,Y)

RETURN X-YXSGN(X/Y)XINT(ABS(X/Y)).
FNEND

17

RND

No change. Note, however, that the sequence of numbers generated will be different.

RNORM

Be sure that the program segment which contains the RNORM has a reference to COM /Matrix/

(see the appendix on Matrices). Write a function which also references COM /Matriv/ and
replace RNORM by an invocation of this function. Your function should determine the row norm
(the value returned by the function) and the row number (Rnormrow) associated with this norm.

RNORMROW

Provide the COM reference and function discussed in RNORM Note that the Series 200 syntaxer
will have changed RNORMROW to Rnormrow, which is just what you want. This will reference the
appropriate COM variable.

ROTATES

Write a function using substring specifiers and concatenation (&) to do this. Replace ROTATES by
a call to this function.

RPLOT

No change. See PDIR.

RPTS

No change. Note, however, that the Series 80 returns a null string if the number of repetitions
specified is negative. The Series 200 gives an error instead. If this is important to you, write a
function which tests for this special case and replace RPT$ with an invocation of this function.

RTD

Append the following code to your program and replace RTD by FNRtd.

DEF FNRtd(X)
RETURN 180%X/PI
FNEND

78

SARRAY

Delete the SARRAY statement. You will need to declare each string array in a COM or DIM

statement or use the system default dimensions (subscript upper bound of 10 and 18 characters
for each element). This means that you will need to decide on a subscript upper bound and a
maximum length for the strings in the array. This also means that you cannot use the string

variables which were in the SARRAY as both ordinary strings and string arrays.

SAVE

Make sure that the file specifier is a legal Series 200 file specifier. Note that a Series 80 SAVE
creates a DATA file, while a Series 200 SAVE creates an ASCII file.

SCALE

SCALE is automatically changed to WINDOW by the Series 200 syntaxer. No change is required on

your part.

SCRATCHBIN

Delete this statement. The Series 200 does not have this capability. Note that the Series 200

syntaxer will have changed SCRATCHBIN to Scratchbin.

SCRATCHSUB

Change SCRATCHSUB to DELSUB. See CALL for an explanation of how to handle the subprogram

name.

SEC

Use 1/C0S(<num exp>) if your Series 80 trig mode is either RAD or DEG This will be equivalent

to the Series 80 SEC(<num exp>) if your Series 80 program has DEFAULT OFF. It will give an

error whenever the value of <num exp> is an odd multiple of w/4 radians (90 degrees).

If your Series 80 program has DEFAULT ON and you want to avoid these errors, write a function

using COS which returns machine infinity rather than giving an error. Note, however, that the
value of machine infinity is different on the two systems.

If your Series 80 trig mode is GRAD, write a function to convert grads to radians and use it to

convert <num exp> to radians before invoking COS.

79

SECURE

Series 200 BASIC does not have a SECURE statement, but there is a Secure subprogram in your
BASIC Utilities Library. To use this utility in your program, change SECURE to Secure. See the

utility instructions for further details.

If your Series 80 SECURE statement uses security type 2, you may be able to use the Series 200

PROTECT statement.

SEEK__END

See the appendix on MIKSAM.

SEEKFIRST

See the appendix on MIKSAM.

SEEK_KEY

See the appendix on MIKSAM.

SEEK_NEXT_KEY

See the appendix on MIKSAM.

SEEK_PRIOR__KEY

See the appendix on MIKSAM.

SEND

If your SEND statement is directed to an HP-IB interface, update the interface select code
appropriately. Also, replace SCG by SEC and EOL by END.

There is no Series 200 analog of SEND directed to non-HP-IB interfaces. Check to see whether
the CONTROL and WRITEIO can provide the desired capability.

SETGU

To establish graphics units as the current unit of measure, replace SETGU by

CLIP 0,100%RATIO,0,100

if the horizontal axis of the plotting area is longer than the vertical. Replace it by

CLIP 0,100,0,RATIO*100

otherwise. On the Series 200, this will cause all record of the units which were previously in

effect to be lost. See SETUU for more details.

80

Note that the Series 200 syntaxer will have changed SETGU to Setgu.

SET I/0

The Series 80 SET 1/0 statement provides the ability to alter the contents of interface control

registers. You may be able to perform the desired operation using the Series 200 CONTROL
statement. In addition to changing the select code to the proper Series 200 select code, you will
probably need to change the register number and the data value to be sent to it, as well. Consult

your Series 200 BASIC Language Reference or BASIC Interfacing Techniques manual for details.

SET TIMEOUT

If your SET TIMEOUT statement is used with an ON TIMEOUT statement to define a timeout
activity where none is currently defined, delete your SET TIMEOUT statement and use the time it

specifies in the associated ON TIMEOUT statement. See ON TIMEOUT for more details.

If your SET TIMEOUT statement is used to change the timeout time for an existing ON TIMEOUT
for a given interface, replace the SET TIMEOUT with an ON TIMEOUT which specifies the same
action as the existing ON TIMEOUT and uses the time (converted from milliseconds to seconds)
specified in the SET TIMEOUT.

SETTIME

Write a function which computes total elapsed seconds from the seconds and date parameters of

SETTIME. Use the result of this function as the argument of SET TIMEDATE.

SETUU

In order to be able to switch between user and graphics units easily (i.e, to simulate SETGU and

SETUU), you will need to save away user units when you set them up. The best way to do this is to
set up a named COM area for this purpose and to set the appropriate COM variables whenever
you do a SHOW or WINDOW. For example, let the COM declaration be

COM/Limits/Uu_xmin,Uu_xmax , Uu_ymin,K Uu_ymax

Then whenever you execute a SHOW or a WINDOW, insert four assignment statements which set the

COM variables to the limits just established.

Replace SETUU by a SHOW or a WINDOW statement which uses the COM variables as parameters.

Choose SHOW if you want isotropic scaling and WINDOW if you want anisotropic.

Note the the Series 200 syntaxer will have changed SETUU to Setuu.

81

SET__UP

See the appendix on MIKSAM.

SFLAG

See the appendix on Flags.

SGN

No change.

SHORT

Change SHORT to REAL; the Series 200 does not support the SHORT data type. In addition, the

maximum upper bound for any array subscript on the Series 200 is 32766 if OPTION BASE is 0

and 32767 f it is 1. If your arrays are larger than this, you will need to restructure your

program.

SHOW

No change. See SETUU.

SIN

No change is required if your Series 80 trig mode is RAD or DEG If your Series 80 trig mode is
grads, apply FNGtr to the argument of SIN before applying it (see GRAD).

SLET

Delete the word SLET or change it to LET.

SLITE

Untranslatable. Delete all references to this function.

SMAX

Replace the call to SMAX with an expression which is | less than SIZE + BASE of the firs.

dimension of the string array. This requires AP2.0. This will give you the dimensioned upper
bound of the array, not the location of the last non-null element. If you want to find the last

non-null element, write a function to do it and replace the call to SMAX by a call to your
function.

82

SPOLL

Replace the device selector with the appropriate Series 200 device selector. Note that the Series

200 does not support SPOLL to an interface select code.

SQR

No change.

ST RESULT

The Series 200 has no analog to ST RESULT for returning the result of the AUTOSTART test. To
determine which Series 200 machine is in use, use SYSTEM$ ("SYSTEM ID"). This requires AP2.0.

STATUS

The Series 200 STATUS statement is very similar syntactically to the Series 80 STATUS, but there
are many differences in semantics. You will need to translate this statement very carefully. If

your STATUS statement uses variables rather than constants, translation may be impossible.

If your Series 80 STATUS statement specifies an interface select code, replace it with the
appropriate Series 200 select code. If it specifies a buffer, replace the string variable by the

corresponding I/O path name.

You will need to check the documentation for both systems to determine which Series 200
register corresponds to your Series 80 register. If you do not find a STATUS register

correspondence, also check the Series 200 READIO registers for the interface to see if they

provide the needed functionality.

If your STATUS statement contains a list of variables to receive status information, you will

probably need to rearrange the variable list or replace the entire statement with a list of STATUS

statements each interrogating one status register. This is because the order of registers is often

different.

In addition, you may need to make other modifications to your program if you take actions

depending on the value returned by STATUS because the two systems do not always use the same

values to mean the same thing. For example, in the Series 80, a newly created buffer has a fill
pointer of 0. In the Series 200, the value is 1.

STOP

No change.

83

STOREBIN

Delete this statement. The Series 200 has a STORE BIN command, which is not programmable.

STORE BIN

See STOREBIN.

SUB

Remove the quotes that delimit the subprogram name, and be sure that the subprogram name is
a legal Series 200 name. Insert the keyword OPTIONAL immediately after the opening parenthesis
of the parameter list. Change any array references of the form A() or A(,) to references of the

form A(X).

If your subprogram does any buffer operations, you will need to modify your parameter list. If
the subprogram does not do any string operations on the buffer, you can replace the string name

in the parameter list by an 1/0 path name. If the subprogram does both string operations and
buffer operations, you will need to add the I/O path name to the list immediately after the
string name. This will prevent any complications with optional parameters.

See RAD for a discussion of the effect of subprograms on trigonometric computations.

SUBEND

On the Series 200, every subprogram must have exactly one SUBEND statement, and this must be

the highest-numbered statement in the subprogram (except for comments). Insert a SUBEND at

the end of your subprogram if necessary, and change all other SUBENDs to SUBEXITs.

SUBEXIT

No change. See SUBEND.

See RAD for a discussion of the effect of subprograms on trigonometric computations.

SUM

No change. This requires AP2.0. Note that the Series 200 cannot handle empty arrays.

84

SWAP

Untranslatable. Delete this statement.

TAB

You must delete TAB from LABEL lists. No other changes are required.

Note that because the HP9826 has a 50-column screen, PRINT and DISP directed to this CRT
and containing TABs may not produce the same effect as on an 80-column screen.

TAN

No change is required if your Series 80 trig mode is RAD or DEG If your Series 80 trig mode is
grads, apply FNGtr to the argument of TAN before applying it (see GRAD).

Note that if DEFAULT is ON and the argument of TAN is an odd multiple of n/4 radians (90
degrees), the Series 80 returns machine infinity. The Series 200 does not have DEFAULT ON and

always reports an error.

TIME

Replace TIME by TIMEDATE MOD 86400.

TIMES

Replace TIMES by TIMES (TIMEDATE). This requires AP2.0.

TRACE

Replace TRACE by TRACE ALL Note that this will give trace information about variable
assignments as well as about order of statement execution. In addition, the Series 80 TRACE

statements direct their output to the PRINTER IS device. The Series 200 TRACE ALL directs its
output to the system message line of the CRT and to the PRINTALL printer if printall mode has
been turned on.

TRACE ALL

No change. See TRACE.

TRACE VAR

Replace the statement by TRACE ALL See TRACE.

TRANSFER

Change both your source and destination specifiers to the associated I/O path names. If you have

not already associated an I/O path name with the device specifier which appears in the
TRANSFER, you can insert an ASSIGN statement prior to the TRANSFER to make this association.

Remove the specification of INTR or FHS. The Series 200 system will pick a transfer mode for
you. Consult the Series 200 BASIC Language Reference or Interfacing Techniques manual for
information on how the mode is selected. This will show you how to force INTR or FHS if you
really want to do this.

If you have specified DELIM apply CHR$ to the delim byte. The Series 200 expects a string
expression here. If you have specified EOI, change it to END.

Caution is needed to be sure that your TRANSFERs will terminate in the same way on the two

systems. Both systems will terminate outbound TRANSFERs when the buffer 1s empty and inbound

TRANSFERs when the buffer is full or when the first specified delimiter is received. However, the

Series 80 and Series 200 check for full or empty buffers in different ways. The Series 80 checks
to see if the fill or empty pointer has reached the end of the buffer. The Series 200 has circular

buffers, so it checks to see if fill pointer has reached the empty pointer, or vice-versa. You can,
however, make your TRANSFERs terminate as expected by using a CONTROL statement ahead of

your TRANSFER to set your fill or empty pointer to 1, as needed. Be sure to save away the old

value of the pointer so that you can restore it after the TRANSFER completes. This is an excellent

use of ON EOT.

TRANSLATE

Delete this statement. Note that the Series 200 syntaxer will have changed TRANSLATE to

Translate.

TRIGGER

If your TRIGGER statement contains a single device selector, update it appropriately. If it contains
more than one, either update each one and replace the single TRIGGER statement by a series of
TRIGGER statements, each specifying one of the devices, or replace the list of device specifiers by
the I/0 path name associated with that multiple listener configuration.

The bus sequences sent by the two systems are slightly different in order.

86

TRIMS

No change. This requires AP2.0. Note that the Series 80 TRIM$ does not trim leading or trailing
blanks which also have character highlights. The Series 200 TRIM$ does not trim leading blanks
with highlights, but does trim trailing ones. This is because the two machines use different
representations for highlighted characters.

TYP

Delete all references to TYP and restructure the statements containing them. The Series 200 does

not support typed data files. If your program relies heavily on TYP, you may want to consider

encoding type information for your file in a string array and writing routines to read the type
information from this array.

If you are using TYP to test for end-of-file and end-of-record, you can use the Series 200

STATUS statement to obtain the same information.

Consult the data transportation section of this document for more information about files.

UBND

Replace UBND (array, dimension) by BASE (array,dimension)+SIZE(array.dim nsion)-1. This
requires AP2.0.

UNCLIP

Replace UNCLIP by CLIP OFF. Note that the Series 200 syntaxer will change UNCLIP to Unclip.

UNCONFIG

Untranslatable. Delete this statement. In the Series 200, only SCRATCH A or cycling power

returns a memory volume to ordinary memory use.

UPCS$

No change. This requires AP2.0. Note, however, that in the Series 200, UPC$ always uses the
collating sequence associated with the current LEXICAL ORDER IS, while in the Series 80, it uses
the ASCII collating sequence. If an international keyboard is in use, it may be necessary to
precede the UPC$ by LEXICAL ORDER IS ASCII and follow it by another LEXICAL ORDER IS.

87

VAL

No change is required if the argument string contains no blanks and has at most a single sign
character. The Series 80 will ignore imbedded blanks, but the Series 200 uses a blank to
terminate the number it is trying to build. The Series 80 allows an arbitrary number of "+" and

“-" signs in the argument, but the Series 200 allows only one.

VALS

No change.

VOLUME ... IS

Delete this statement. Series 200 BASIC does not use volume labels. If for some reason you need
to assign or change a volume label, use the INITIALIZE utility in your BASIC Utilities Library.

VOLS

Use CAT TO a string array and extract the volume label from the array. This requires AP2.0.

WAIT

Divide the argument by 1000 to convert milliseconds to seconds.

WHERE

In an HP8S program, WHERE returns the coordinates of the last position to which the pen was
moved under either manual or program control. This is not translatable.

If your HP87 program does not use the Plotter ROM, WHERE returns the physical pen position.
This is untranslatable whenever the logical and physical pen positions differ.

If your HP87 program uses the Plotter ROM or if the logical and physical pen positions are

identical, use the WHERE statement in GRAPH2.1 to return the logical pen position. Note that in

the Series 200, the pen status is returned in a string variable, not in a numeric variable. If you
need the pen status, you can obtain it from the first byte of the status string.

XAXIS

The Series 200 does not have the ability to draw a single axis. The closest you can come to this

capability without writing a subprogram to draw a single axis is to use CLIP to make the plotting
area only as high as you want your X-axis major tick marks, then use AXES to draw a pair of

axes. The Y-axis will be very short. Be sure to execute CLIP OFF or reset CLIP to its former

value after the AXES statement.

88

XREF

The Series 200 XREF is a (non-programmable) command in AP2.0 or XREF2.1 and lacks the L
and V options. It always cross-references both lines and variables and gives much more
information, too. In order to get a cross-reference from a program, use

OUTPUT 2. “XREF"&CHR$(255)&"X";

You can modify this output statement as necessary to direct the XREF output to the desired
device or to specify a particular subprogram to cross-reference.

YAXIS

The Series 200 does not have the ability to draw a single axis. The closest you can come to this
capability without writing a subprogram to draw a single axis is to use CLIP to make the
plotting area only as wide as you want your Y-axis major tick marks, then use AXES to draw a
pair of axes. The X-axis will be very short. Be sure to execute CLIP OFF or reset CLIP to its

former value after the AXES statement.

89

Data Transportation

Most of this document deals with moving programs from a Series 80 computer to a Series 200
system. Moving program source, however, may be only part of your problem. You may have a

considerable amount of data to transport, as well. This chapter will give you some guidelines on
how to move your data. Some sections contain more techniques than exact directions because the
details of what needs to be done depend heavily on the organization of yourfiles.

Series 200 BASIC programs can access data in either ASCII or BDAT files. You probably want to
get your data into BDAT files (with FORMAT OFF) because they require considerably less disc

space. Also, BDATfiles support random access, but ASCII files do not.

Series 80 BASIC uses DATA, GRAF, and PKEYfiles to hold data. Most of this section will be
devoted to helping you convert DATA files to Series 200 BDAT files. GRAF files cannot be

ported directly to the Series 200. However, you can write a Series 80 BASIC program which uses

BREAD to write the contents of graphics memory to a string and then writes that string to a
DATA file. PKEY files can be handled in a similar fashion. That is, you can write a Series 80

program to read the data from your PKEY file and write it to a DATA file. Then you can use
one of the methods described below to convert your DATA file to a BDAT file.

Some fundamental differences between the Series 80 and Series 200 file systems may mean that

you will need to make program modifications to be able to read your data correctly from a

BDAT file. Series 80 DATA files contain type information before each data item. BDAT files
contain no type information. Furthermore, all numbers require eight bytes of storage on a

DATA file. On a BDAT file with FORMAT OFF, REAL numbers take eight bytes, but
INTEGER numbers take only two. If when you convert your DATA file to a BDAT file you

treat all numeric data as REALs, you need to be sure that the ENTER statements which read the
data contain only REAL variables. Otherwise you will read the wrong amount of data from the

disc and misalign yourself, creating an insufferable mess. To prevent the problem, either change

the declarations of the necessary variables to REAL or read the data into temporary REAL

variables and then use LET to assign the values to the INTEGER variables.

91

Via an Interface

The easiest way to transport your data is to read the data from your DATA file into your Series
80 machine, ship it via HP-IB to the Series 200 machine, and then write it to a BDAT file from

there. Consult the Moving Your Program section of the first chapter of this document for details
of how to configure your systems. Replace the programs given there with those below. The

equipment requirements stated there pertain here with the following exceptions. If you are using

an HP8S, you need a Mass Storage ROM. If you are using an HP87 and your DATA file contains
no strings longer than 80 characters, you can get by without the I/O ROM. Modify both
programs below to eliminate the "#' from the image specifiers used in sending and receiving
string data.

The following programs assume that your Series 200 computer is non-controller on the HP-IB
interface which connects it to your Series 80 machine. If this is not the case, change the Series
80 program to contain PRINTER IS 7 instead of PRINTER IS 720, and change the Series 200

program to do ASSIGN @S80 TO 720 instead of ASSIGN @S80 TO 7. These programs also assume
that your DATA file contains no strings longer than 400 characters. If necessary, change the
dimensioned length of S$ in both programs.

These programs further assume that your file does not contain any data which would create
numeric or string overflows on the Series 200. If this is not the case, modify the Series 80
program to test for overflows and take corrective action.

The Series 80 program requires you to specify an access mode for the translated file. You must
choose R for random access or S for sequential access. If you choose random access, the programs

will line up the data so that corresponding items always begin corresponding logical records. This
may cause "holes" in the Series 200 file. In rare cases, it may also cause you to need to make your

Series 200 logical records larger than your Series 80 records. If you choose sequential access,
there will be no holes in the data, but the data will usually not line up on logical records just the

way it did on the Series 80 DATA file. For these reasons, you should not attempt to do random
access to a file which has been translated for sequential access, and vice-versa.

The Series 200 program requires you to specify size parameters for the BDAT file it creates to
hold your translated data. In most cases, you can use the values for your DATA file. It may be

necessary to experiment somewhat. REAL numbers require eight bytes of storage on a BDAT

file. (INTEGERS require two bytes. If you modify these programs to write INTEGERs where
possible, you can take advantage of this space savings.) Strings take four bytes plus one byte per

character plus a pad byte if the string has odd length.

92

10

20
30
40

S0
60
70
80
90
100
110
120
130
140
150
160
170
180

190
200
210

220
230
240
250
260

270
280

290
300
310
320
330
340
350
360
370

380

| PROGRAM FOR YOUR SERIES 80 MACHINE, REQUIRES
PRINTER/PLOTTER ROM FOR HP-85
DIM S$[400] ,F$[30])
PRINTER 1S 720 | CHANGE AS NEEDED
DISP "ENTER THE FILE SPECIFIER OF FILE TO BE
TRANSLATED"
INPUT F$
ASSIGN# 1 TO F$
DISP "LOGICAL RECORD LENGTH IN BYTES"
INPUT L
DISP “ENTER R FOR RANDOM OR S FOR SEQUENTIAL ACCESS"
INPUT A$
A=0 @ IF A$="R" THEN A=] @ PRINT 4 @ PRINT 1
ON ERROR GOTO 230
R=1 @ B=1 | CURRENT LOGICAL RECORD AND BYTE
T=TYP(1) | TYPE OF NEXT ITEM TO BE READ FROM FILE
IF T=1 THEN GOTO 240 | NUMERIC DATA
IF T=2 THEN GOTO 260 ! WHOLE STRING
IF T=8 THEN GOTO 280 ! START OF STRING
IF T=3 THEN PRINT 3 @ DISP "DONE" @ BEEP @ STOP ! END
OF FILE
IF T<>4 THEN GOTO 230
R=R+] @ B=! @ READ# 1,R | END OF RECORD
IF A THEN PRINT 4 ! PRINT R | TELL SERIES 200 TO START
NEW RECORD
GOTO 140
DISP “UNEXPECTED ERROR" @ BEEP @ STOP
PRINT 1 @ READ# 1;N @ PRINT N @ DISP N
B=B+8 @ GOTO 350
PRINT 2 @ READ# 1:S$ @ PRINT LEN(S$) @ PRINT USING
"# K":S$
B=B+3+LEN(S$) @ DISP S$ GOTO 350
PRINT 2 @ READ# 1:S$ @ PRINT LEN(S$) @ PRINT USING
"# K":S$
B=1 @ R=R+1 @ DISP S$
READ# 1.R
T=TYP())
IF T=9 THEN R=R+]1 @ GOTO 300 ! PASS OVER ENTIRE RECORD
READ# 1:S$ | T=10 -- RE-READ STRING BUT DON'T PRINT IT
B=3+LEN(S$)
IF B=L+1 THEN B=1 @ R=R+l
IF NOT A THEN GOTO 140
PRINT 4 @ PRINT R @ GOTO 140 ! TELL SERIES 200 TO
START NEW RECORD
END

93

10 | PROGRAM FOR YOUR SERIES 200 MACHINE -- RUNS IN BASIC 2.0

20 DIM S$[400],F$[30]

30 INPUT "FILE SPECIFIER OF DESTINATION FILE" F$

40 INPUT "LOGICAL RECORD LENGTH IN BYTES" ,L

S0 INPUT "NUMBER OF LOGICAL RECORDS", Rec

60 CREATE BDAT F$,Rec,L

70 ASSIGN @F TO F$

80 CONTROL @F,7;Rec+l,1 | WRITE END OF FILE MARKER

90 ASSIGN @S80 TO 7

100 Next_item: ENTER @S80;T

110 SELECT T

120 CASE 1 | NUMERIC DATA

130 ENTER @S80;N

140 OUTPUT @F;N

150 PRINT N

160 CASE 2 ! STRING DATA

170 ENTER @S80: Length

180 Image$="# 6 "&VALS$(Length)&"A"
190 ENTER @S80 USING Image$;S$

200 OUTPUT @F ;S$

210 PRINT S$

220 CASE 3 | END OF FILE

230 OUTPUT 1; "DONE"

240 BEEP

250 STOP

260 CASE 4 ! END OF RECORD

270 ENTER @S80;R

280 ENTER @F,R | POSITION FILE POINTER TO BEGINNING OF

RECORD R

290 CASE ELSE

300 DISP “UNEXPECTED ERROR"

310 BEEP

320 STOP

330 END SELECT

340 GOTO Next_item

350 END

94

Via an ASCII File

Another way to move your data to a BDAT file is to create an ASCII file using your Series 80

machine. If the program which accesses this data does only serial accesses to the file, your Series

200 machine can access this file directly. If you need to do random access or want more compact

storage, then write a Series 200 BASIC program which reads your ASCII file and writes the data

to a BDATfile.

To use this method, you must have a disc drive supported by your Series 80 machine and a disc

drive for the same size floppy discs which is supported by Series 200 BASIC. (These can be the
same disc drive). If your Series 80 machine is an HP8S, you will also need a Series 80 Mass

Storage ROM. A list of suitable disc drives can be found in an appendix at the end of this
document. The process of creating an ASCII file involves the use of a Series 80 LIF program
which is available from the Series 80 Users’ Library (9-0049 for the HP85 and 9-0069B for the
HP87)

To create the ASCII file, execute the following sequence of steps:

LOAD “"LIF87:msus" | LOAD "LIF:msus™ for HPB8S

LOADBIN "“LIFg:msus" | LOAD BIN "C:msus™ for HP8S5

Press [RUN]. Give your msus (unquoted) starting with a semicolon, and press the softkey labeled

LIFSAVE. Continue answering the questions asked.

NOTE

The LIF program contains a number of limitations and bugs

which may trip you up. The program is not secured, however,

so you can edit it as problems arise. As written, the program

can handle strings up to 192 characters long. If your file

contains longer strings, change the declaration and

initialization of L$. If the program reads a null string from
your file, the variable L is set to O (the length of the string)

and then used to index the string. This produces an error. If

your file may contain null strings, you need to add a test for

them and avoid substring operations on them. The LIF

program quits prematurely and prints "DONE" on the screen if

it encounters an end of record mark. In the section which tests

TYP(1), you need to include a test for the value 4. If

TYP(1)=4 you need to advance to the beginning of the next

record on the file and continue testing TYP(1). There may be
other problems, too. Be sure to have the program print out

your data so that you can verify that it is operating correctly.

Also, don't believe the "DONE" message unless it is preceded by a

message saying that the translation is 100% complete.

You will need to write your own program to read from the ASCII file and write to a BDATfile.
As a first guess for size of the BDAT file, use the record length and number of records from your

Series 80 DATA file. For maximum compactness, you may wish to try again with a shorter

record length. This program will nced to take into consideration the organization and use of the

original DATA file. Such factors as whether the file is to be accessed randomly or sequentially,

how the data is laid out, and the longest string on the file all enter in. Recall that Series 80

95

DATA files store all numeric data in 8 bytes. Series 200 BDAT files use 8 bytes for REALS but
only 2 bytes for INTEGERs. Hence you can save considerable space if you can store your
numeric data as INTEGERs. Recall also that the Series 80 has a greater range than the Series
200 for all data types. Your program must handle numeric and string overflows.

96

Using only the Series 200

If you no longer have access to a Series 80 computer, but you have a floppy disc containing the
DATA file to be transported, you can still convert your data. Obtain the BASIC Flexible Disc

Data Translator Utility (63.9520) from the Series 200 BASIC Users’ Library. This utility will
allow you to read the DATA file. You will need to write your own program to write the DATA

to a BDATfile.

97

Appendix A

Flags

Series 200 BASIC does not have a system of built-in flags like that in Series 80 BASIC. There
are, however, a number of ways to simulate Series 80 flags on the Series 200. Several approaches
are outlined in this appendix. The method you use should depend on how you use the flags and
which flag operations you perform most often.

All of the possible flag implementations discussed here involve setting up a named COM area
dedicated to flag storage. Every program context which uses flags must reference this COM with
a statement like

COM/Flags/ <flag declaration>

In addition, you will need to modify your program references to flags and write some
subprograms to allow you to examine and manipulate your flags.

If your program does not use the flag operations which address the flags as an eight-character

string, you can make <flag declaration> be INTEGER Flag(1:64). Accessing individual flags is

then quite simple. FLAG(i) becomes Flag (i) (the syntaxer will do this one automatically), CFLAG i
becomes Flag(i)=0, and SFLAG i becomes Flag(i)=1. If however, you need to use FLAGS and
SFLAG <string expression>, you will need to write some fairly tedious subprograms to simulate
these.

At the other extreme, if your flag operations are primarily FLAG$ and SFLAG <string expression>,
you can let <flag declaration> be Flag$[8]. Then FLAGS becomes Flag$ (automatically) and
SFLAG <string expression> becomes Flag$=<string expression>. You will need to write routines
to simulate FLAG(i), CFLAG {, and SFLAG i.

As a compromise, you can let <flag declaration> be Flag$[64]. This allows you to performs all
flag operations fairly easily, especially if you don’t care that the data is no longer in an
8-character string. FLAG(i) becomes Flag$[i;1], CFLAG i becomes Flag$[i;1]="0", SFLAG i
becomes Flag$[i;1]="1" SFLAG <string expression> becomes Flag$=<string expression>, and
FLAGS becomes Flags.

99

Appendix B

MIKSAM

The HP87 MIKSAM ROM contains a number of statements for manipulating PKEY files, which
contain key-record number pairs for a data base. These statements automatically maintain the

data in the PKEY file in a B-tree. The Series 200 does not have any similar mechanisms for
supporting B-trees. Hence, there is no way to support most of the MIKSAM keywords.

If you wish to port data-base programs to the Series 200, you can create BDAT files to hold

key-record number pairs. However, you will need to write your own routines to insert, delete,
and find keys and to manage the file. B-trees are rather sophisticated, so you may decide that
another data structure would be easier to use.

To move the data from a PKEY file to a BDATfile, first write a Series 80 BASIC program to
write the contents of the PKEY file to a DATA file, and then use one of the methods discussed
in the the Data Transportation chapter to convert the DATA file to a BDATfile.

100

Appendix C

Matrices

One significant difference between matrix manipulation on the Series 80 and on the Series 200

is that the Series 80 allows empty matrices while the Series 200 does not. You may need to

restructure your programs because of this. Consult your Series 80 Matrix ROM manual for an

explanation of empty matrices. The manual also shows how the special case of an empty matrix
is handled for the built-in matrix functions.

In the Series 200, all of the matrix manipulation capabilities are found in AP2.0.

The Series 80 Matrix ROM contains a number of functions, such as AMAX, which are not
supported by the Series 200. You can write your own versions of these functions fairly easily and

replace the unsupported Series 80 keywords by invocations of these functions. You will find that
the BASE, RANK, and SIZE functions will be very helpful to you in doing this.

Some of the Series 80 matrix functions, like AMAX, have side effects. For example, AMAX computes
not only the maximum value in the array, but it also determines the location of this value in the
array. This location can be retrieved later by using the AMAXROW and AMAXCOL functions. If your
Series 80 program uses AMAXROW and AMAXCOL, you must provide a Series 200 function which
determines the location of the array maximum at the same time that it computes AMAX. Since
AMAXROW and AMAXCOL work on the Series 80 even if there has been a context switch since the
AMAX was performed, the best way to simulate this behavior on the Series 200 is to use a named

COM block exclusively to hold values like the location of the array maximum. Each Series 80
location-reporting function can be replaced by a scalar in this COM block. The COM block can
be referenced by each program segment which uses a function like AMAX as well as by each
program segment which uses a function like AMAXROW.

A sample COM declaration follows. This declaration assumes that you will use all of AMAX, AMIN,
CNORM, MAXAB, and RNORM If this is not true of your program, you may shorten the COM
statement to suit your purposes.

COM /Matrix/ INTEGER Amaxcol Amaxrow,Amincol ,Aminrow,

Cnormcol ,Maxabcol ,Maxabrow,Rnormrow

Note that the Series 80 and Series 200 may use different algorithms for evaluating MAT

operations. This, together with the different numeric representations used by the two systems,
may cause results to be somewhat different in the least significant places.

101

Appendix D

Supported Disc Drives

The following is a list of disc drives supported by Series 200 computers. Software requirements
beyond BASIC 2.0 are noted.

Device Requires

HP7908 AP2.0

HP7911 AP2.0

HP9121S AP2.0

HP9121D AP2.0

HP9133 AP2.0

HP9134 AP2 .0

HP9135 AP2.0

HP988S AP2.0

HP9895

HP82901

HP82902

102

	Cover
	Table of Contents
	A Note to the Systems Engineer
	Introduction
	Limitations
	Moving Your Program
	The ASCII File Approach
	The Machine-to-Machine Transfer Approach
	The Keyboard Entry Method

	Simplifying Your Program
	Line Length
	Multi-statement Lines
	Maximum Line Number
	Variable Names
	Scalar/Array Naming Conflicts

	Keyword Information
	Operators
	Arithmetic Operators
	Relational Operators
	String Operators
	Arithmetic Expressions

	Data Precision
	Special Characters
	Variables
	Variable Names

	IMAGE Specifiers
	File Specifiers
	HP-IB Operations
	Alphabetical Keyword Listing
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Y

	Data Transportation
	Via an interface
	Via an ASCII File
	Using only the Series 200

	Appendix A: Flags
	Appendix B: MIKSAM
	Appendix C: Matrices
	Appendix D: Supported Disc Drives

